卓迈文档网
当前位置 首页 >专题范文 > 教案设计 >

函数概念教案【10篇】(完整)

发布时间:2023-01-11 11:30:06 来源:网友投稿

函数概念教案1  各位领导老师大家好,今天我说课的内容是函数的近代定义也就是函数的第一课时内容。  一、教材分析  1、教材的地位和作用:  函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的下面是小编为大家整理的函数概念教案【10篇】(完整),供大家参考。

函数概念教案【10篇】(完整)

函数概念教案1

  各位领导老师大家好,今天我说课的内容是函数的近代定义也就是函数的第一课时内容。

  一、教材分析

  1、教材的地位和作用:

  函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,所以函数的第一课时非常的重要。

  2、教学目标及确立的依据:

  教学目标:

  (1)教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

  (2)能力训练目标:通过教学培养学生的抽象概括能力、逻辑思维能力。

  (3)德育渗透目标:使学生懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

  教学目标确立的依据:

  函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学生学好其他的数学内容。而掌握好函数的概念是学好函数的基石。

  3、教学重点难点及确立的依据:

  教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

  教学难点:映射的概念,函数近代概念,及函数符号的理解。

  重点难点确立的依据:

  映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

  二、教材的处理:

  将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使学生真正对函数的概念有很准确的认识。

  三、教学方法和学法

  教学方法:讲授为主,学生自主预习为辅。

  依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为学生能学好后面的知识打下坚实的基础。

  学法:四、教学程序

  一、课程导入

  通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

  例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?

  二、 新课讲授:

  (1) 接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生总结归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:A→B,及原像和像的定义。强调指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的对应法则 f。进一步引导学生总结判断一个从A到B的对应是否为映射的关键是看A中的任意一个元素通过对应法则f在B中是否有唯一确定的元素与之对应。

  (2)巩固练习课本52页第八题。

  此练习能让学生更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

  例1。给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导学生发现它们是特殊的映射进而给出函数的近代定义(设A、B是两个非空集合,如果按照某种对应法则f,使得A中的任何一个元素在集合B中都有唯一的元素与之对应则这样的对应叫做集合A到集合B的映射,它包括非空集合A和B以及从A到B的对应法则f),并说明把函f:A→B记为y=f(x),其中自变量x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{f(x):x∈A}叫做函数的值域。

  并把函数的近代定义与映射定义比较使学生认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。

  再以让学生判断的方式给出以下关于函数近代定义的注意事项:

  2。函数是非空数集到非空数集的映射。

  3。f表示对应关系,在不同的"函数中f的具体含义不一样。

  4。f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

  5。集合A中的数的任意性,集合B中数的唯一性。

  6。“f:A→B”表示一个函数有三要素:法则f(是核心),定义域A(要优先),值域C(上函数值的集合且C∈B)。

  三、讲解例题

  例1。问y=1(x∈A)是不是函数?

  解:y=1可以化为y=0*X+1

  画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。

  [注]:引导学生从集合,映射的观点认识函数的定义。

  四、课时小结:

  1。映射的定义。

  2。函数的近代定义。

  3。函数的三要素及符号的正确理解和应用。

  4。函数近代定义的五大注意点。

  五、课后作业及板书设计

  书本P51 习题2。1的1、2写在书上3、4、5上交。

  预习函数三要素的定义域,并能求简单函数的定义域。

  函数(一)

  一、映射:2。函数近代定义:例题练习

  二、函数的定义[注]1—5

  1。函数传统定义三、作业:

函数概念教案2

  教学目标:

  1.进一步理解用集合与对应的语言来刻画的函数的概念,进一步理解函数的本质是数集之间的对应;

  2.进一步熟悉与理解函数的定义域、值域的定义,会利用函数的定义域与对应法则判定有关函数是否为同一函数;

  3.通过教学,进一步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.

  教学重点:

  用对应来进一步刻画函数;求基本函数的定义域和值域.

  教学过程:

  一、问题情境

  1.情境.

  复述函数及函数的定义域的概念.

  2.问题.

  概念中集合A为函数的定义域,集合B的作用是什么呢?

  二、学生活动

  1.理解函数的值域的概念;

  2.能利用观察法求简单函数的值域;

  3.探求简单的复合函数f(f(x))的定义域与值域.

  三、数学建构

  1.函数的值域:

  (1)按照对应法则f,对于A中所有x的值的对应输出值组成的集合称之

  为函数的值域;

  (2)值域是集合B的子集.

  2.x g(x) f(x) f(g(x)),其中g(x)的值域即为f(g(x))的定义域;

  四、数*用

  (一)例题.

  例1 已知函数f (x)=x2+2x,求 f (-2),f (-1),f (0),f (1).

  例2 根据不同条件,分别求函数f(x)=(x-1)2+1的值域.

  (1)x∈{-1,0,1,2,3};

  (2)x∈R;

  (3)x∈[-1,3];

  (4)x∈(-1,2];

  (5)x∈(-1,1).

  例3 求下列函数的值域:

  ①= ;②= .

  例4 已知函数f(x)与g(x)分别由下表给出:

  x1234x1234

  f(x)2341g(x)2143

  分别求f (f (1)),f (g (2)),g(f (3)),g (g (4))的值.

  (二)练习.

  (1)求下列函数的值域:

  ①=2-x2;②=3-|x|.

  (2)已知函数f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).

  (3)已知函数f(x)=2x+1,g(x)=x2-2x+2,试分别求出g(f(x))和f(g(x))的值域,比较一下,看有什么发现.

  (4)已知函数=f(x)的定义域为[-1,2],求f(x)+f(-x)的定义域.

  (5)已知f(x)的定义域为[-2,2],求f(2x),f(x2+1)的定义域.

  五、回顾小结

  函数的对应本质,函数的定义域与值域;

  利用分解的思想研究复合函数.

  六、作业

  课本P31-5,8,9.

函数概念教案3

  一、教材分析

  本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1 函数的概念》共3课时,本节课是第1课时。

  托马斯说:“函数概念是近代数学思想之花”。 生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。

  函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。函数的的重要性正如*所说:“数学中的转折点是笛卡尔的变数,有了变数,运动就进入了数学;有了变数,辩证法就进入了数学”。

  二、学生学习情况分析

  函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;(三)高中用导数工具研究函数的单调性和最值。

  1.有利条件

  现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

  初中用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

  2.不利条件

  用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

  三、教学目标分析

  课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

  1.知识与能力目标:

  ⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

  ⑵理解函数的三要素的含义及其相互关系;

  ⑶会求简单函数的定义域和值域

  2.过程与方法目标:

  ⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

  ⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.

  3.情感、态度与价值观目标:

  感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

  四、教学重点、难点分析

  1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

  重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。 但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

  突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。

  2.教学难点:第一:从实际问题中提炼出抽象的概念;第二:符号“y=f(x)”的含义的理解.

  难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

  突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

  五、教法与学法分析

  1.教法分析

  本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

  2.学法分析

  在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

函数概念教案4

  各位领导老师大家好,今天我说课的内容是函数的近代定义也就是函数的第一课时内容。

  一、教材分析

  1、教材的地位和作用:

  函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,所以函数的第一课时非常的重要。

  2、教学目标及确立的依据:

  教学目标:

  (1)教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

  (2)能力训练目标:通过教学培养学生的抽象概括能力、逻辑思维能力。

  (3)德育渗透目标:使学生懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

  教学目标确立的依据:

  函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学生学好其他的数学内容。而掌握好函数的概念是学好函数的基石。

  3、教学重点难点及确立的依据:

  教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

  教学难点:映射的概念,函数近代概念,及函数符号的理解。

  重点难点确立的依据:

  映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

  二、教材的处理:

  将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使学生真正对函数的概念有很准确的认识。

  三、教学方法和学法

  教学方法:讲授为主,学生自主预习为辅。

  依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为学生能学好后面的知识打下坚实的基础。

  学法:四、教学程序

  一、课程导入

  通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

  例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?

  二、 新课讲授:

  (1) 接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生总结归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:A→B,及原像和像的定义。强调指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的对应法则 f。进一步引导学生总结判断一个从A到B的对应是否为映射的关键是看A中的任意一个元素通过对应法则f在B中是否有唯一确定的元素与之对应。

  (2)巩固练习课本52页第八题。

  此练习能让学生更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

  例1。给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导学生发现它们是特殊的映射进而给出函数的近代定义(设A、B是两个非空集合,如果按照某种对应法则f,使得A中的任何一个元素在集合B中都有唯一的元素与之对应则这样的对应叫做集合A到集合B的映射,它包括非空集合A和B以及从A到B的对应法则f),并说明把函f:A→B记为y=f(x),其中自变量x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{f(x):x∈A}叫做函数的值域。

  并把函数的近代定义与映射定义比较使学生认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。

  再以让学生判断的方式给出以下关于函数近代定义的注意事项:

  2。函数是非空数集到非空数集的映射。

  3。f表示对应关系,在不同的函数中f的具体含义不一样。

  4。f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

  5。集合A中的数的任意性,集合B中数的唯一性。

  6。“f:A→B”表示一个函数有三要素:法则f(是核心),定义域A(要优先),值域C(上函数值的集合且C∈B)。

  三、讲解例题

  例1。问y=1(x∈A)是不是函数?

  解:y=1可以化为y=0*X+1

  画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。

  [注]:引导学生从集合,映射的观点认识函数的定义。

  四、课时小结:

  1。映射的定义。

  2。函数的近代定义。

  3。函数的三要素及符号的正确理解和应用。

  4。函数近代定义的五大注意点。

  五、课后作业及板书设计

  书本P51 习题2。1的1、2写在书上3、4、5上交。

  预习函数三要素的定义域,并能求简单函数的定义域。

  函数(一)

  一、映射:2。函数近代定义:例题练习

  二、函数的定义[注]1—5

  1。函数传统定义三、作业:

函数概念教案5

  一、教材分析

  本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1 函数的概念》共3课时,本节课是第1课时。

  托马斯说:“函数概念是近代数学思想之花”。 生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。

  函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。函数的的重要性正如*所说:“数学中的转折点是笛卡尔的变数,有了变数,运动就进入了数学;有了变数,辩证法就进入了数学”。

  二、学生学习情况分析

  函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;(三)高中用导数工具研究函数的单调性和最值。

  1.有利条件

  现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

  初中用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

  2.不利条件

  用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

  三、教学目标分析

  课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

  1.知识与能力目标:

  ⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

  ⑵理解函数的三要素的含义及其相互关系;

  ⑶会求简单函数的定义域和值域

  2.过程与方法目标:

  ⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

  ⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.

  3.情感、态度与价值观目标:

  感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

  四、教学重点、难点分析

  1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

  重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。 但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

  突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。

  2.教学难点:第一:从实际问题中提炼出抽象的概念;第二:符号“y=f(x)”的含义的理解.

  难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

  突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

  五、教法与学法分析

  1.教法分析

  本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

  2.学法分析

  在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

函数概念教案6

  教学目标:

  1、进一步理解的概念,能从简单的实际事例中,抽象出关系,列出解析式;

  2、使学生分清常量与变量,并能确定自变量的取值范围。

  3、会求值,并体会自变量与值间的对应关系。

  4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的的自变量的取值范围的求法。

  5、通过的教学使学生体会到事物是相互联系的。是有规律地运动变化着的。

  教学重点:了解的意义,会求自变量的取值范围及求值。

  教学难点:概念的抽象性。

  教学过程:

  (一)引入新课:

  上一节课我们讲了的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的。

  生活中有很多实例反映了关系,你能举出一个,并指出式中的自变量与吗?

  1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系。

  2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系。

  解:1、y=30n

  y是,n是自变量

  2、 ,n是,a是自变量。

  (二)讲授新课

  刚才所举例子中的,都是利用数学式子即解析式表示的。这种用数学式子表示时,要考虑自变量的取值必须使解析式有意义。如第一题中的学生数n必须是正整数。

  例1、求下列中自变量x的取值范围.

  (1) (2)

  (3) (4)

  (5) (6)

  分析:在(1)、(2)中,x取任意实数, 与 都有意义。

  (3)小题的 是一个分式,分式成立的条件是分母不为0。这道题的分母是 ,因此要求 。

  同理(4)小题的 也是分式,分式成立的条件是分母不为0,这道题的分母是 ,因此要求 且 。

  第(5)小题, 是二次根式,二次根式成立的条件是被开方数大于、等于零。 的被开方数是 .

  同理,第(6)小题 也是二次根式, 是被开方数。

  解:(1)全体实数

  (2)全体实数

  (3)

  (4) 且

  (5)

  (6)

  小结:从上面的例题中可以看出的解析式是整数时,自变量可取全体实数;的解析式是分式时,自变量的取值应使分母不为零;的解析式是二次根式时,自变量的取值应使被开方数大于、等于零。

  注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要 即可。教师可将解题步骤设计得细致一些。先提问本题的分母是什么?然后再要求分式的分母不为零。求出使成立的自变量的取值范围。二次根式的问题也与次类似。

  但象第(4)小题,有些同学会犯这样的错误,将答案写成 或 。在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用。限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”。说明这里 与 是并且的关系。即2与—1这两个值x都不能取。

函数概念教案7

  教学目标:

  1.进一步理解指数函数的性质;

  2.能较熟练地运用指数函数的性质解决指数函数的*移问题;

  教学重点:

  指数函数的性质的应用;

  教学难点:

  指数函数图象的*移变换.

  教学过程:

  一、情境创设

  1.复习指数函数的概念、图象和性质

  练习:函数=ax(a>0且a≠1)的定义域是_____,值域是______,函数图象所过的定点坐标为 .若a>1,则当x>0时, 1;而当x<0时, 1.若0<a<1,则当x>0时, 1;而当x<0时, 1.

  2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a>0且a≠1,函数=ax的图象恒过(0,1),那么对任意的a>0且a≠1,函数=a2x1的图象恒过哪一个定点呢?

  二、数学应用与建构

  例1 解不等式:

  (1) ;(2) ;

  (3) ;(4) .

  小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.

  例2 说明下列函数的图象与指数函数=2x的图象的关系,并画出它们的示意图:

  (1) ; (2) ;(3) ;(4) .

  小结:指数函数的*移规律:=f(x)左右*移 =f(x+)(当>0时,向左*移,反之向右*移),上下*移 =f(x)+h(当h>0时,向上*移,反之向下*移).

  练习:

  (1)将函数f (x)=3x的图象向右*移3个单位,再向下*移2个单位,可以得到函数 的图象.

  (2)将函数f (x)=3x的图象向右*移2个单位,再向上*移3个单位,可以得到函数 的图象.

  (3)将函数 图象先向左*移2个单位,再向下*移1个单位所得函数的解析式是 .

  (4)对任意的a>0且a≠1,函数=a2x1的图象恒过的定点的坐标是 .函数=a2x-1的图象恒过的定点的坐标是 .

  小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.

  (5)如何利用函数f(x)=2x的图象,作出函数=2x和=2|x2|的图象?

  (6)如何利用函数f(x)=2x的图象,作出函数=|2x-1|的图象?

  小结:函数图象的对称变换规律.

  例3 已知函数=f(x)是定义在R上的奇函数,且x<0时,f(x)=1-2x,试画出此函数的图象.

  例4 求函数 的最小值以及取得最小值时的x值.

  小结:复合函数常常需要换元来求解其最值.

  练习:

  (1)函数=ax在[0,1]上的最大值与最小值的和为3,则a等于 ;

  (2)函数=2x的值域为 ;

  (3)设a>0且a≠1,如果=a2x+2ax-1在[-1,1]上的最大值为14,求a的值;

  (4)当x>0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围.

  三、小结

  1.指数函数的性质及应用;

  2.指数型函数的定点问题;

  3.指数型函数的草图及其变换规律.

  四、作业:

  课本P71-11,12,15题.

  五、课后探究

  (1)函数f(x)的定义域为(0,1),则函数 的定义域为 .

  (2)对于任意的x1,x2R ,若函数f(x)=2x ,试比较 的大小.

函数概念教案8

  1 单位圆与正弦函数

  在初中,我们学习了锐角α的正弦函数值:sinα= ,如图:sinA= ,由于a是直角边,c是斜边,所sinA∈(0,1)。由于我们通常都是将角放到*面直角坐标系中,我们来看看会发生什么?

  在直角坐标系中,(如图所示),设角α(α∈(0, ))的终边与半经为r的圆交于点P(a,b),则角α的正弦值是:sinα= .根据相似三角形的知识可知,对于确定的角α, 都不会随圆的半经的改变而改变。为简单起见,令r=1(即为单位圆),那么sinα=b,也就是说,若角α的终边与单位圆相交于P,则点P的纵坐标b就是角α的正弦函数。

  直角三角形显然不能包含所有的角,那么,我们可以仿照锐角正弦函数的定义.你认为该如何定义任意角的正弦函数?

  一般地,在直角坐标系中(如上图),对任意角α,它的终边与单位圆交于点P(a,b),我们可以唯一确定点P(a,b)的纵坐标b,所以P点的纵坐标b是角α的函数,称为正弦函数,记作=sinα(α∈R)。通常我们用x,分别表示自变量与因变量,将正弦函数表示为=sinx.正弦函数值有时也叫正弦值.

  请同学们画图,并利用正弦函数的定义比较说明: 角与 角的终边与单位圆的交点的纵坐标有什么关系?它们的正弦值有什么关系? 角和 角呢?- 角和 角呢?- 角和- 角呢?

  sin =sin = sin =-sin =-

  Sin(- )=sin( )= sin(- )=sin(- )=

  通过上述问题的讨论,容易得到:终边相同的角的正弦函数值相等,即

  sin(2π+α)=sinα (∈Z),说明对于任意一个角α,每增加2π的整数倍,其正弦函数值不变。所以,正弦函数是随角的变化而周期性变化的,正弦函数是周期函数,2π(∈Z,≠0)为正弦函数的周期。

  2π是正弦函数的正周期中最小的一个,称为最小正周期。一般地,对于周期函数f(x),如果它所有的周期中存在一个最小的正数,那么这个最小的正数就叫作f(x)的最小正周期。

  【巩固深化,发展思维】

  1.若点P(—3,)是α终边上一点,且sinα=— ,求值.

  2.若角α的顶点为坐标原点,始边与x轴正半轴重合,终边在函数=—3x (x≤0)的图像上,则sinα= 。

  (三)、归纳整理,整体认识:

  (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

  (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

  (3)你在这节课中的表现怎样?你的体会是什么?

  (四)、作业布置:1、已知锐角 终边上一点 (3,4),求 角的正弦值。

  2、已知 是角 终边上一点,求 的值。

  3、已知角 的终边落在直线 上,求 的值。

  4、若实数 , 满足 ,求: 的值。

函数概念教案9

  学习目标:1、掌握EXCEL中公式的输入方法与格式 。

  2、记忆EXCEL中常用的函数,并能熟练使用这些函数进行计算。

  一、知识准备

  1、 EXCEL中数据的输入技巧,特别是数据智能填充的使用

  2、 EXCEL中单元格地址编号的规定

  二、学中悟

  1、对照下面的表格来填充

  (1)D5单元格中的内容为

  (2)计算“王芳”的总分公式为

  (3)计算她*均分的公式为

  (4)思考其他人的成绩能否利用公式的复制来得到?

  (5)若要利用函数来计算“王芳”的总分和*均成绩,那么所用到的函数分别为 。

  计算总分的公式变为; 计算*均分的公式为。 思考:比较两种方法进行计算的特点,思考EXCEL中提供的函数对我们计算有什么好处,我们又得到了什么启示?

  反思研究

  三、 学后练

  1、下面的表格是圆的参数,根据已经提供的参数利用公式计算出未知参数

  1) 基础练习

  (1)半径为3.5的圆的直径的计算公式为

  (2)半径为3.5的圆的面积的计算公式为

  2) 提高训练

  (1)能否利用公式的复制来计算出下面两个圆的直径?若不能说明原因,并提出如何修改公式后才能利用公式复制来计算其他圆的直径?

  (2)能否利用公式的复制来计算出下面两个圆的面积?若不能说明原因,并提出如何修改公式后才能利用公式复制来计算其他圆的面积?

  2、根据下面的表格,在B5单元格中利用RIGHT函数去B4单元格中字符串的右3位。利用INT函数求出门牌号为1的电费的整数值,结果置于C5单元格中。

  思考实践提高:根据上面两个问题,我们得到了那些提示?并且将上面的公式与函数进行上机实实践。

  四、 作业布置

  (1)上机完成成绩统计表中总分和*均分的计算;

  (2)上机完成圆的直径和面积的计算

  (3)练习册

函数概念教案10

  (1)——定义、图象、性质目标:

  1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系,会求对数函数的定义域。

  2.培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;

  3.培养坚忍不拔的意志,培养发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。

  重点:对数函数的定义、图象、性质

  难点:对数函数与指数函数间的关系

  过程:

  一、复习引入:实例引入:回忆学习指数函数时用的实例我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数 是分裂次数 的函数,这个函数可以用指数函数 = 表示。现在,我们来研究相反的.问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数 就是要得到的细胞个数 的函数。根据对数的定义,这个函数可以写成对数的形式就是 如果用 表示自变量, 表示函数,这个函数就是 由反函数概念可知, 与指数函数 互为反函数这一节,我们来研究指数函数的反函数对数函数

  二、新课

  1.对数函数的定义:函数 叫做对数函数;它是指数函数 的反函数。对数函数 的定义域为 ,值域为 。

  2.对数函数的图象由于对数函数 与指数函数 互为反函数,所以 的图象与 的图象关于直线 对称。因此,我们只要画出和 的图象关于 对称的曲线,就可以得到 的图象,然后根据图象特征得出对数函数的性质。

  活动设计:由学生任意取底数作图,观察分析讨论,教师引导、整理 3.对数函数的性质由对数函数的图象,观察得出对数函数的性质。见P87 表 图象性质定义域:(0,+∞)值域:R过点(1,0),即当 时, 时 时 时 时 在(0,+∞)上是增函数在(0,+∞)上是减函数活动设计:学生观察、分析讨论,教师引导、整理4.应用例1.(课本第94页)求下列函数的定义域:(1) ; (2) ; (3) 分析:此题主要利用对数函数 的定义域(0,+∞)求解。解:(1)由 >0得 ,∴函数 的定义域是 ;(2)由 得 ,∴函数 的定义域是 (3)由9- 得-3 ,∴函数 的定义域是 注:此题只是对数函数性质的简单应用,应强调学生注意书写格式。例2.求下列函数的反函数① ② 解:① ∴ ② ∴

  三、小结:对数函数定义、图象、性质四、作业: 课本第95页 练习 1,2 习题2.8 1,2

推荐访问:教案 函数 概念 函数概念教案【10篇】 函数概念教案1 函数概念教案1年级

Top