卓迈文档网
当前位置 首页 >专题范文 > 教案设计 >

2023年《3倍数特征》教案【10篇】

发布时间:2022-12-30 11:20:06 来源:网友投稿

《3的倍数的特征》教案1  自学预设:  自学内容P19做一做,P20的T4-11  指导方法  复习:1、判断下面哪些数是2的倍数,哪些数是5的倍数?  18,25,46,85,100,325,1下面是小编为大家整理的2023年《3倍数特征》教案【10篇】,供大家参考。

2023年《3倍数特征》教案【10篇】

《3的倍数的特征》教案1

  自学预设:

  自学内容P19做一做,P20的T4-11

  指导方法

  复习:1、判断下面哪些数是2的倍数,哪些数是5的倍数?

  18,25,46,85,100,325,180,90

  2、2的倍数和5的倍数各有什么特征?

  3、既是2的倍数又是5的倍数的数有什么特征?

  思考:

  1、1×3=

  2×3=

  3×3=

  4×3=

  5×3=……..

  你发现上面的式子有什么特点?

  2、3的倍数有什么特点?举例说明

  3、哪些数既是2、5的倍数又是3的倍数?

  小组讨论

  尝试练习

  1、试着完成P19的做一做练习

  2、判断下列数哪些是3的倍数?

  333427180

  69390405300

  教学内容:3的倍数的特征(P19及P20题4~5)

  教学目标:

  ①使学生通过操作自己发现3的倍数的特征,并归纳出3的倍数的特征。

  ②能应用3的倍数的特征,会判断一个数是否是3的倍数。

  ③培养学生观察、分析、概括、推理能力。

  ④让学生在探索发现过程中体验到成功的乐趣,培养学习数学的信心。

  教学重点:探求3的倍数的特征。

  教学难点:会判断一个数是否是3的倍数。

  教学过程:

  一、预习反馈,探究新知

  我们已经知道了2、5倍数的特征,那么3的倍数又有什么特征呢?现在我们就来学习和研究3的倍数的特征(板书课题)

  1.反馈3的倍数的特征。

  (1)思考并回答:①什么样的数是3的倍数?

  ②要想研究3的倍数的特征,应该怎样做?

  (2)学生反馈:(根据学生说的逐一板书,先找出一些3的倍数)

  1×3=35×3=15

  2×3=66×3=18

  3×3=97×3=21

  4×3=128×3=24

  ……

  (3)观察:3的倍数的各位数字又什么特征?它是不是3的倍数?其它位数又什么特征?

  (4)提问:如果老师讲这些3的倍数的各位数字和十位数字调换,它还是3的倍数吗?(学生自己动手验证)

  我们发现:调换位置后还是3的倍数,那么3的倍数有什么奥妙呢?(分组讨论,汇报)可以提示:将各个数字加起来

  汇报:如果把3的倍数的各位上的数字相加,他们的和是3的倍数。

  验证:下面各数,哪些是3的倍数呢?210,54,216,129,9231,9876543204

  (5):一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  2.练习:完成P19做一做

  三、课堂:学生今天学习的内容。

  四、巩固练习:完成P20题4~5

  五、能力拓展:

  (1)在□里填上适当的数,使它是3的倍数

  3□5□1646□400□

  (2)在□里填上适当的数,使它成为偶数,并且是3的倍数。

  □7□3□□06□0□81□□

  (3)有一个数有因数3,又是5的倍数,在两位数中最大的一个数是,在三位数中最小的一个数是。

  六、课后:

  七、作业:

  八、课后反思:

《3的倍数的特征》教案2

  教学内容:

  苏教版义务教育教科书《数学》五年级下册第33~34页例5、“练一练”和“你知道吗”,第36页练习五第8~10题。

  教学目标:

  1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。

  2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。

  3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。

  教学重点:

  认识3的倍数的特征。

  教学难点:

  研究并发现3的倍数的特征。

  教学准备:

  准备计数器教具和学具。

  教学过程:

  一、激活经验

  1.复习回顾。

  提问:2和5的倍数有哪些特征?

  回顾一下,我们是怎样发现2和5的倍数的特征的?(板书:找出倍数——观察比较——发现特征)

  2.引入课题。

  谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的`倍数的特征。(板书课题)

  二、学习新知

  1.提出猜想,引导质疑。

  引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或O.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)

  许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)

  质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)

  2.利用经验,组织探究。

  (1)找3的倍数。

  (2)探索特征。

  3.学生归纳,强化认识。

  追问:现在你能告诉大家,经过找出倍数、观察比较,我们发现3的倍数有什么特征吗?

  让学生读一读板书的结论。

  强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。

  4.阅读“你知道吗”。

  启发:当你发现3的倍数的特征时,你对数学有什么感觉?

  谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。

  交流:你知道了什么?什么样的数叫完全数?举例说一说。(结合举例6和28,先板书因数,再板书表示完全数的等式) 现在发现的完全数都有什么特征?

  三、练习巩固

  1.做“练一练”第1题。

  2.做“练一练”第2题。

  3.做练习五第8题。

  4.做练习五第9题。

  5.做练习五第10题。

  四、课堂总结

  提问:今天的学习你又有什么收获和体会?

  判断3的倍数的方法,和判断2、5的倍数不同在哪里?

《3的倍数的特征》教案3

  设计说明

  1.让学生产生探究的兴趣。

  兴趣是学好数学的动力源泉。为了使学生产生探究的意识,激发学习兴趣,形成最佳的学习心理状态,我充分利用小学生好奇心强这一心理特点,创设了“猜一猜”的游戏情境:让学生出题,随意说一个数,老师迅速地说出该数是不是3的倍数,以此来调动学生学习的积极性。

  2.让学生发现学习的方法。

  本设计在教学3的倍数时,先让学生运用已经学过的2和5的倍数的特征的知识进行知识迁移,对3的倍数的特征进行初步的猜想。再由猜想与验证的不一致,激起学生探究新知识的兴趣。接着根据学生提出的探究3的倍数的特征的方法,让学生以小组合作的形式,探究3的倍数的特征。通过这样一个过程,培养学生的推理能力,充分体现学生的主体地位。

  课前准备

  教师准备 PPT课件 计数器 记录表

  学生准备 百数表 计数器教学过程

  教学过程

  创设情境

  师:用5,6,7组成一个没有重复数字的三位数,使这个数是2的倍数。说说什么样的数是2的倍数。

  师:能组成既是2的倍数又是5的倍数的数吗?为什么?

  师:同学们,我们已经知道要判断一个数是不是2或5的倍数,只需观察这个数的个位即可。那么你们能通过观察发现3的倍数的特征吗?今天我们就一起来探究3的倍数的特征。(板书课题:3的倍数的特征)

  设计意图:创设问题情境,既可以巩固已学知识,又可以引导学生积极主动地投入到3的倍数的特征的教学过程中来,有利于学生轻松、愉快地学习新知。

  探究新知

  1.提问:我们已经知道判断一个数是不是2或5的倍数,只要看这个数的个位即可,那么你们能猜出什么样的数是3的倍数吗?

  (学生可能会说个位上是3,6,9的数是3的倍数)

  师:大家同意他的猜想吗?他的猜想到底对不对呢?我们一起来探究一下。

  课件出示百数表。

  师:在百数表中找出3的倍数。用自己喜欢的方法圈一圈。

  师:请同学们观察一下,3的倍数个位上是哪些数?刚才那位同学的猜想正确吗?要判断一个数是不是3的倍数,能不能只看个位?

  2.观察百数表中圈出的3的倍数,你们发现了什么?

  (1)引导学生先横着看,再竖着看,学生找不到3的倍数的特征。

  (2)引导学生斜着看,先看第一斜行的3,12,21。

  学生分组讨论这3个数有什么特征。

  汇报交流:第一斜行3的倍数各位上的数相加,和是3。

  (3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?

  设计意图:先让学生从第一斜行开始思考3的倍数的特征,能使教学难点化整为零,易于逐个突破。

  3.操作验证。

  (1)在计数器上分别拨出几个3的倍数:12,42,45,75,87,看看各用了几颗珠子。

  学生以小组为单位,用计数器拨出3的倍数,并填写记录表。

  总结:一个数各位上的数的和是3的倍数,这个数就是3的倍数。 (2)思考:观察这些3的倍数,它们十位与个位上的数的和与3有着怎样的关系?学生分组讨论后得出结论。

《3的倍数的特征》教案4

  教学目标:

  1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。

  2、培养分析、比较及综合概括能力。

  3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。

  教学重点:

  掌握3的倍数的特征,正确判断一个数是否是3的倍数。

  教学难点:

  探索3的倍数的特征。

  教学过程:

  一、【创设情景,明确目标】(3分钟)

  (一)创设情景,反馈预习

  1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?

  P:16、24、85、102、138、170、

  2的倍数:16、24、102、138、170

  5的倍数:85、170

  即是2的倍数又是5的倍数:170

  师:说一说,你是怎么想的?

  生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.

  2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

  生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。

  师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。

  3、教师板书课题:3的倍数的特征。

  (二)明确目标,引领方法

  1、出示学习目标(见学案),生自读目标。

  2、同伴说说自己的理解,谈谈如何实现目标。

  【设计意图】交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。

  二、【自主学习,同伴合作】(15分钟)

  (一)自主学习,自我感知

  1、小棒游戏,探究规律

  师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?

  师:你来!

  师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。

  学生摆出:51

  师:51是3的倍数。我算的比计算器快吧?

  师:能摆一个三位数吗?

  学生摆出:312

  师:312是3的倍数。

  师:再来一个难点的。

  学生摆出:1123

  师:1123不是3的倍数。

  师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。

  2、小组合作探究

  (1)用3根小棒摆一个数,这些都是3的倍数吗?

  师:我们一起来看探究要求:用相应根数的小棒在数位表上各摆出3个数。

  小组内合理分工,请大家看一下导学案的合作要求

  ①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。

  ②用计算器算一算,将3的倍数圈出来。

  ③仔细观察表格,从中你发现了什么?

  (2)用4根再摆出一些数,这些都是3的倍数吗?

  (3)用6根再摆出一些数,这些都是3的倍数吗?

  (4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?

  预设

  第一组:用3根小棒摆:2、12、102,都分别是3的倍数。

  第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。

  第三族,用6根小棒摆:都是3的倍数。

  问题:你发现了什么?

  生:我们发现了3根、6根小棒摆出来的数都是3的倍数。

  师评价:关键要看小棒的根数,了不起的发现。

  生:只要小棒的根数是3的倍数,这个数就是3的倍数。

  师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。

  生:9根、12根、15根……都行——

  (5)真的是这么回事吗?以9为例摆摆看。

  师:来,说说你们小组摆出了哪个数,它是不是3的倍数?

  生:我用9根小棒摆出了36,36是3的倍数。

  师:哪个小组还想出三位数、四位数或是更大的数?

  生:我用9根小棒摆出了216,216是3的倍数。

  生:我用9根小棒摆出了3015,3015是3的倍数。

  师:说得完吗?

  生:说不完。

  师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?

  生:很合理。

  师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。

  师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。

  3、总结提升

  师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?

  师:小组内交流一下。

  小组活动。

  师:谁来说说?

  生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。

  生2:各个数位上数的和是3的倍数,这个数就是3的倍数。

  生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。

  师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。

  4、探究原因,区别理解

  (1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

  研究16

  师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)

  但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)

  用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)

  看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。

  通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。

  (2)问:为什么3的倍数特征要看各个数位相加的和呢?

  举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?

  一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,

  138分一分,试一试,看看是不是3的倍数

  一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。

  (2)总结:梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。

  P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)

  三、【巩固拓展,形成能力】(10分钟)

  (一)巩固训练,夯实基础

  1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

  把一个数各个数位上的数相加是3的倍数……

  2、圈出下面是3的倍数的数:42、78、111、165、655、5988

  3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?

  (预设:生1:1。

  师:可以吗?还有其他答案吗?

  生2:1,4,7都可以。

  师:理由呢?

  生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。

  师:恭喜你,三种可能都被你们猜中了!

  师:如果它既是2的倍数,又是3的倍数呢?

  生:24。

  师:为什么只有24可以呢?

  生:因为只有24既是2的倍数,又是3的倍数。)

  (二)拓展训练,灵活创新

  以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)

  13689362754、123456789

  老师:如果用各个数位之和是3的倍数,比较麻烦。

  但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……

  后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。

  教师巡视,个别辅导。

  (二)同伴讨论,互助共进

  完成学案中“同伴合作,互助共进”内容。

  重点交流学生所举的例子。

  教师巡视,个别辅导。

  【设计意图】这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。

  四、【师生共学,交流分享】(5分钟)

  (一)小组展示,彰显风采

  指名小组进行汇报。

  (二)师生完善,共同提高

  1、学生纠正、补充、质疑

  2、教师精讲、点拨、评价

  在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。

  【设计意图】通过教师的点拨完善学生对比的认识。

  五、【巩固拓展,形成能力】(10分钟)

  (一)巩固训练,夯实基础

  先由学生自主完成学案中相应的内容,再同桌交流,完善答案。

  1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

  把一个数各个数位上的数相加是3的倍数……

  2、看一看哪些是3的倍数:42、78、111、165、655、5988

  原来判断是用除法,现在用加法。改革了

  3、不用计算,能快速算出来那个式子有余数吗?

  802、3;342、3

  4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数

  5、下面都是吗?789、345、654

  都是,有什么特点?相邻、连续三个自然数。

  是不是所有都是呢?举例:123.为什么呢?

  654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。

  6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。

《3的倍数的特征》教案5

  自学预设:

  自学内容P19做一做,P20的T4-11

  指导方法

  复习:1、判断下面哪些数是2的倍数,哪些数是5的倍数?

  18,25,46,85,100,325,180,90

  2、2的倍数和5的倍数各有什么特征?

  3、既是2的倍数又是5的倍数的数有什么特征?

  思考:

  1、1×3=

  2×3=

  3×3=

  4×3=

  5×3=……..

  你发现上面的式子有什么特点?

  2、3的倍数有什么特点?举例说明

  3、哪些数既是2、5的倍数又是3的倍数?

  小组讨论

  尝试练习

  1、试着完成P19的做一做练习

  2、判断下列数哪些是3的倍数?

  333427180

  69390405300

  教学内容:3的倍数的特征(P19及P20题4~5)

  教学目标:

  ①使学生通过操作自己发现3的倍数的特征,并归纳出3的倍数的特征。

  ②能应用3的倍数的特征,会判断一个数是否是3的倍数。

  ③培养学生观察、分析、概括、推理能力。

  ④让学生在探索发现过程中体验到成功的乐趣,培养学习数学的信心。

  教学重点:探求3的倍数的特征。

  教学难点:会判断一个数是否是3的倍数。

  教学过程:

  一、预习反馈,探究新知

  我们已经知道了2、5倍数的特征,那么3的倍数又有什么特征呢?现在我们就来学习和研究3的倍数的特征(板书课题)

  1.反馈3的倍数的特征。

  (1)思考并回答:

  ①什么样的数是3的倍数?

  ②要想研究3的倍数的特征,应该怎样做?

  (2)学生反馈:(根据学生说的逐一板书,先找出一些3的倍数)

  1×3=35×3=15

  2×3=66×3=18

  3×3=97×3=21

  4×3=128×3=24

  ……

  (3)观察:3的倍数的各位数字又什么特征?它是不是3的倍数?其它位数又什么特征?

  (4)提问:如果老师讲这些3的倍数的各位数字和十位数字调换,它还是3的倍数吗?(学生自己动手验证)

  我们发现:调换位置后还是3的倍数,那么3的倍数有什么奥妙呢?(分组讨论,汇报)可以提示:将各个数字加起来

  汇报:如果把3的倍数的各位上的数字相加,他们的和是3的倍数。

  验证:下面各数,哪些是3的倍数呢?210,54,216,129,9231,9876543204

  (5):一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  2.练习:完成P19做一做

  三、课堂:学生今天学习的内容。

  四、巩固练习:完成P20题4~5

  五、能力拓展:

  (1)在□里填上适当的数,使它是3的倍数

  3□5□1646□400□

  (2)在□里填上适当的数,使它成为偶数,并且是3的倍数。

  □7□3□□06□0□81□□

  (3)有一个数有因数3,又是5的倍数,在两位数中最大的一个数是,在三位数中最小的一个数是。

  六、课后:

  七、作业:

  八、课后反思:

《3的倍数的特征》教案6

  教学内容:

  苏教版义务教育教科书《数学》五年级下册第33~34页例5、“练一练”和“你知道吗”,第36页练习五第8~10题。

  教学目标:

  1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。

  2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。

  3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。

  教学重点:

  认识3的倍数的特征。

  教学难点:

  研究并发现3的倍数的特征。

  教学准备:

  准备计数器教具和学具。

  教学过程:

  一、激活经验

  1.复习回顾。

  提问:2和5的倍数有哪些特征?

  回顾一下,我们是怎样发现2和5的倍数的特征的?(板书:找出倍数——观察比较——发现特征)

  2.引入课题。

  谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的倍数的特征。(板书课题)

  二、学习新知

  1.提出猜想,引导质疑。

  引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或O.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)

  许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)

  质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)

  2.利用经验,组织探究。

  (1)找3的倍数。

  (2)探索特征。

  3.学生归纳,强化认识。

  追问:现在你能告诉大家,经过找出倍数、观察比较,我们发现3的倍数有什么特征吗?

  让学生读一读板书的结论。

  强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。

  4.阅读“你知道吗”。

  启发:当你发现3的倍数的特征时,你对数学有什么感觉?

  谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。

  交流:你知道了什么?什么样的数叫完全数?举例说一说。(结合举例6和28,先板书因数,再板书表示完全数的等式)现在发现的完全数都有什么特征?

  三、练习巩固

  1.做“练一练”第1题。

  2.做“练一练”第2题。

  3.做练习五第8题。

  4.做练习五第9题。

  5.做练习五第10题。

  四、课堂总结

  提问:今天的学习你又有什么收获和体会?

  判断3的倍数的方法,和判断2、5的倍数不同在哪里?

《3的倍数的特征》教案7

  学习内容

  3的倍数的特征(教材第10页的内容及教材第11页练习三的第3~6题)第 1 课时 课型 新授

  学习目标

  1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

  2.引导学生学会判断一个数能否被3整除。

  3.培养学生分析、判断、概括的能力。

  教学重点

  理解并掌握3的倍数的特征

  教学难点

  会判断一个数能否被3整除。

  教具运用

  课件

  教学方法

  二次备课

  教学过程

  【复习导入】

  1.学生口述2的倍数的特征,5的倍数的特征。

  2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

  324 153 345 2460 986 756

  教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

  板书课题:3的倍数的特征。

  【新课讲授】

  1.猜一猜:3的倍数有什么特征?

  2.算一算:先找出10个3的倍数。

  3×1=3 3×2=6 3×3=9

  3×4=123×5=15 3×6=18

  3×7=213×8=24 3×9=27

  3×10=30……

  观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

  提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→21 15→5118→81 24→42 27→72

  教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  (以四人为一小组、分组讨论,然后汇报)

  汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  3.验证:下面各数,哪些数是3的倍数呢?

  21054 216 129 9231 9876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

  4.比一比(一组笔算,另一组用规律计算)。

  判断下面的数是不是3的倍数。

  34025003 1272 2967

  5.“做一做”,指导学生完成教材第10页“做一做”。

  (1)下列数中3的倍数有。

  143545100 332 876 74 88

  ①要求学生说出是怎样判断的。

  ②3的倍数有什么特征?

  (2)提示:

  ①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

  ②接着再考虑什么?(最小三位数是100)

  ③最后考虑又是3的倍数。(120)

  【课堂作业】完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

  【课堂小结】同学们,通过今天的学习活动,你有什么收获和感想?

  【课后作业】完成练习册中本课时练习。

  板书设计第2课时3的倍数的特征

  一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

  【作业设计】

  学习目标,教学方法,数学,教师,能力。

《3的倍数的特征》教案8

  教学目标

  1、经历探索3的倍数特征的过程,理解其特征,能判断一个数是不是3的倍数。

  2、能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展分析、比较、猜测、验证的能力。

  3、通过归纳、类比猜测等学习数学的活动,体验数学问题的探索性和挑战性,感受数学结论的确定性。

  教学重点

  理解3的倍数的特征

  教学难点

  探索活动中,发现规律,并归纳出3的倍数的特征。

  教学过程

  一、谈话引入,提示课题

  我们已经研究了2,5的倍数的特征,那么3的倍数又会有什么特征呢?(板书课题)

  二、探索交流、获取新知

  1、出示1~100数字表格

  2、找出3的倍数,并做出记号

  3、观察3的倍数,你发现了什么?(生认为没有什么规律,师再引导观察)

  ⑴任意选择几个3的倍数。如42、87、93。

  ⑵板书在黑板上

  ⑶交换个位和十位上的数字,得到24、78、39。

  ⑷判断这三个数是不是3的倍数

  ⑸想一想:交换数位前后的两个数中什么不变?(给足充分的讨论时间)生得到:交换前后两个数字的和不变。

  ⑹引导提问:3的倍数的特征跟一个数各个数位上数字的和有关系,到底有什么关系呢?

  ⑺分析、猜测。生从这几个数字的和,可以看出它们又刚好是3的倍数(6、15、12)

  ⑻验证、归纳

  ①让生随意再找几个3的倍数,利用同样方法,将每个数的各个数字加起来进行验证。

  ②发现规律,进行归纳

  ⑼尝试检验:

  ①出示84、92、102、315。

  ②利用规律进行检验。

  ③小结:这个规律对三位数一样成立。

  三、巩固练习

  第7页的试一试和练一练

  四、板书设计:

  3的倍数的特征

  3的倍数的特征:把一个数各个数位上的数字加起来的和正好是3的倍数。

  五、课后反思:

  略

《3的倍数的特征》教案9

  学习内容

  3的倍数的特征(教材第10页的内容及教材第11页练习三的第3~6题) 第 1 课时 课型 新授

  学习目标

  1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

  2.引导学生学会判断一个数能否被3整除。

  3.培养学生分析、判断、概括的能力。

  教学重点

  理解并掌握3的倍数的特征

  教学难点

  会判断一个数能否被3整除。

  教具运用

  课件

  教学方法

  二次备课

  教学过程

  【复习导入】

  1.学生口述2的倍数的特征,5的倍数的特征。

  2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

  324 153 345 2460 986 756

  教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

  板书课题:3的倍数的特征。

  【新课讲授】

  1.猜一猜:3的倍数有什么特征?

  2.算一算:先找出10个3的倍数。

  3×1=3 3×2=6 3×3=9

  3×4=123×5=15 3×6=18

  3×7=213×8=24 3×9=27

  3×10=30……

  观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

  提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→21 15→5118→81 24→42 27→72

  教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  (以四人为一小组、分组讨论,然后汇报)

  汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  3.验证:下面各数,哪些数是3的倍数呢?

  21054 216 129 9231 9876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

  4.比一比(一组笔算,另一组用规律计算)。

  判断下面的数是不是3的倍数。

  34025003 1272 2967

  5.“做一做”,指导学生完成教材第10页“做一做”。

  (1)下列数中3的倍数有 。

  143545100 332 876 74 88

  ①要求学生说出是怎样判断的。

  ②3的倍数有什么特征?

  (2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

  ②接着再考虑什么?(最小三位数是100)

  ③最后考虑又是3的倍数。(120)

  【课堂作业】完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

  【课堂小结】同学们,通过今天的学习活动,你有什么收获和感想?

  【课后作业】完成练习册中本课时练习。

  板书设计 第2课时3的倍数的特征

  一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

  【作业设计】

  学习目标, 教学方法, 数学, 教师, 能力。

《3的倍数的特征》教案10

  教学目标:

  知识与技能:

  1、学生会正确判断一个数是否是3的倍数。

  过程与方法:

  2、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

  情感态度价值观:

  3、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

  教学重、难点:

  1、掌握3的倍数的特征。

  2、能正确判断一个数是否是3的倍数。

  教学过程设计:

  一、复习引新

  1、用5,6,7三个数字组成一个三位数,使这个数是2的倍数?

  说说什么样的数一定是2的倍数,可以摆成5的倍数吗?怎样摆出的数一定是5的倍数呢?

  2、引入:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,那么你能从个位上发现3的倍数的特征吗?今天我们一起来研究3的倍数的特征。(揭示课题:3的倍数的特征)

  二、探索猜想,初步感知

  师:3的倍数有什么特征?

  1、学生进行猜想。

  (1)个位上是3、6、9的数是3的倍数。

  (2)个位上是3、6、9的数不一定是3的倍数,如23、26、29都不是3的倍数。

  (3)学生面对所出现的问题进行猜想,教师可根据学生的猜想进行适当的引导。

  2、可能出现的问题。

  (1)猜测个位上是3、6、9的数是3的倍数。

  (2)个位上能被3整除的数且被3整除。

  3、探索猜想。

  (1)学生用3、4、5三个数字组成是3的倍数的3位数。

  (2)学生如果提出345或354的例子,可板书并多加评论作为后面要学的内容。

  (3)在这个过程中学生可能会提出猜想的结论。即个位上是3、6、9的数是3的倍数。

  4、验证猜想。

  (1)让学生举例子对猜想的结论进行验证。

  (2)在这个环节中,学生有可能也会发现以下情况:

  ①45是3的倍数,但是,个位上的数字是5,不是3、6、9等。

  ②26个位上的数是6,但它不是3的倍数。

  (3)猜想的结论不成立。

  (4)让学生对猜想结论不成立的这个问题提出自己的看法。

  师:对于一个结论是否成立,只举一个正例是不够的,如举一个反例就可以推翻这个结论,这个结论就不能成立。请同学们在今后的学习中要注意。

  三、自主探索,总结3倍数的特征

  1、在质疑中引导学生探究3的倍数的特征。

  师:请在下表中找出3的倍数,并做上记号。那么多的数,我们怎么找呢?我们要聪明地找,从比较小的数开始找。(师出示100以内数表,每小组各一张,在小组活动后,教师组织学生进行交流汇报,并呈现学生圈出3的倍数的百以内的数表,如下图。)

  2、引导观察。

  (1)请同学们观察这个表格,你发现3的倍数有什么特征?把你的发现在小组里说一说。(小组交流后,再组织全班交流。)

  (2)在教学过程中,教师要巡视,认真倾听学生有什么发现,有什么不懂的地方。

  (3)学生可能发现3的倍数个位上的数有1、2、3、4、5、6、7、8、9、0,没有什么特别规律,十位上的数字也没有什么规律。

  3、教师引领。

  (1)斜着观察你发现了什么?

  (2)在学生观察思考的基础上,概括学生的实际情况,提出新的思考问题:观察每个数各个数位上的数与3有什么关系?将每个数的各个数字加起来看一看会怎样?

  (3)试着概括出3的倍数特征。

  4、总结3的倍数的特征。

  一个数各个位上的数字之和如果是3的倍数,那么,这个数一定是3的倍数。否则,这个数就不是3的倍数。

  5 、检验结论。

  (1)我们从10 0以内的数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?

  (2)利用100以内数表来验证。

  (3)延伸到三位数或更大的数。如:573、753、999、1236、2244、7863……

  (4)学生自己写数并验证,然后小组交流,观察得出的结论是否相同。

  四、巩固应用

  1、从3、0、4、5这4个数字中,选出两个数字组成1个两位数,分别满足以下条件:

  (1)是3的倍数。

  (2)同时是2和3的倍数。

  (3)同时是3和5的倍数。

  (4)同时是2、3和5的倍数。

  2、完成教材19页的“做一做”

  五、课堂小结:

  这节课你有什么收获?

  板书设计:

  3的倍数的特征

  一个数各位上的数的和是3的倍数,这个数就是3的倍数

  教学反思:

  “3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,我用复习2、5的倍数特征,迁移到3的倍数特征上来,巧妙设疑,激发学生的兴趣,为学习新的知识,奠定了良好的基础。在新知探究这一块的教学我让学生大胆猜测,质疑,让学生在“实验——讨论——验证”中,产生认知的冲突。激发学生探索的兴趣,然后再在“想象——探索”的过程中,培养学生从不同角度去研究问题,用不同方法去解决问题。学生通过大量的表象积累,思维产生了飞跃,自然就概括出结论。整个课堂孩子们在充分地体验着、感悟着、发展着。这是我觉得成功的地方。


《3的倍数的特征》教案10篇扩展阅读


《3的倍数的特征》教案10篇(扩展1)

——《3的倍数的特征》教案10篇

《3的倍数的特征》教案1

  自学预设:

  自学内容P19做一做,P20的T4-11

  指导方法

  复习:1、判断下面哪些数是2的倍数,哪些数是5的倍数?

  18,25,46,85,100,325,180,90

  2、2的倍数和5的倍数各有什么特征?

  3、既是2的倍数又是5的倍数的数有什么特征?

  思考:

  1、1×3=

  2×3=

  3×3=

  4×3=

  5×3=……..

  你发现上面的式子有什么特点?

  2、3的倍数有什么特点?举例说明

  3、哪些数既是2、5的倍数又是3的倍数?

  小组讨论

  尝试练习

  1、试着完成P19的做一做练习

  2、判断下列数哪些是3的倍数?

  333427180

  69390405300

  教学内容:3的倍数的特征(P19及P20题4~5)

  教学目标:

  ①使学生通过操作自己发现3的倍数的特征,并归纳出3的倍数的特征。

  ②能应用3的倍数的特征,会判断一个数是否是3的倍数。

  ③培养学生观察、分析、概括、推理能力。

  ④让学生在探索发现过程中体验到成功的乐趣,培养学习数学的信心。

  教学重点:探求3的倍数的特征。

  教学难点:会判断一个数是否是3的倍数。

  教学过程:

  一、预习反馈,探究新知

  我们已经知道了2、5倍数的特征,那么3的倍数又有什么特征呢?现在我们就来学习和研究3的倍数的特征(板书课题)

  1.反馈3的倍数的特征。

  (1)思考并回答:①什么样的数是3的倍数?

  ②要想研究3的倍数的特征,应该怎样做?

  (2)学生反馈:(根据学生说的逐一板书,先找出一些3的倍数)

  1×3=35×3=15

  2×3=66×3=18

  3×3=97×3=21

  4×3=128×3=24

  ……

  (3)观察:3的倍数的各位数字又什么特征?它是不是3的倍数?其它位数又什么特征?

  (4)提问:如果老师讲这些3的倍数的各位数字和十位数字调换,它还是3的倍数吗?(学生自己动手验证)

  我们发现:调换位置后还是3的倍数,那么3的倍数有什么奥妙呢?(分组讨论,汇报)可以提示:将各个数字加起来

  汇报:如果把3的倍数的各位上的数字相加,他们的和是3的倍数。

  验证:下面各数,哪些是3的倍数呢?210,54,216,129,9231,9876543204

  (5):一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  2.练习:完成P19做一做

  三、课堂:学生今天学习的内容。

  四、巩固练习:完成P20题4~5

  五、能力拓展:

  (1)在□里填上适当的数,使它是3的倍数

  3□5□1646□400□

  (2)在□里填上适当的数,使它成为偶数,并且是3的倍数。

  □7□3□□06□0□81□□

  (3)有一个数有因数3,又是5的倍数,在两位数中最大的一个数是,在三位数中最小的一个数是。

  六、课后:

  七、作业:

  八、课后反思:

《3的倍数的特征》教案2

  教学目标

  1、知识与技能

  理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。

  2、过程与方法

  经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。

  3、情感态度与价值观

  感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。

  教学重难点

  【教学重点】

  3的倍数特征。

  【教学难点】

  探究3的倍数特征的过程。教学过程

  教学过程

  一、以旧引新,竞赛导入

  1、请说出2的倍数的特征、5的倍数的特征。

  2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?

  35 158 200 87 65 164 4122

  既是2的倍数又是5的倍数的数有什么特征?

  3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?

  4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!

  5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)

  二、猜想探索,归纳验证

  1、大胆猜想:猜一猜3的倍数有什么特征?

  (1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)

  (2)整理认识。只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?

  2、观察探索:出示第10页表格。

  (1)圈一圈。上表中哪些是3的倍数,把它们圈起来。

  (2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)

  (3)全班交流。横着看圈起的前10个数,个位上的数字有什么规律?十位上的数字呢?判断一个数是不是3的倍数,只看个位行吗?

  (4)问题启发:

  大家再仔细看一看,3的倍数在表中排列有什么规律?

  从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)

  个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)

  每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)

  3、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?

  3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  4、验证结论

  大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。

  (1)尝试验证。(生写数,然后判断、交流、得出结论。)

  (2)集体交流。

  教师说一个数。如342,学生先用特征判断,再用计算器检验。

  一个更大的数。4870599,学生先用特征判断,再用计算器检验。

  5、巩固提高。

《3的倍数的特征》教案3

  教学目标:

  1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自身的语言总结特征。

  2、在探索活动中,感受数学的微妙;在运用规律中,体验数学的价值。

  教学重、难点:是3的倍数的数的特征。

  教学过程:

  一、提出课题,寻找3的特征。

  师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜想一下?

  生1:个位上是3、6、9的数是3的倍数。

  生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。

  生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

  师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们一起来研究。(揭示课题)

  师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学人手一张。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  二、自主探索,总结3的特征师:

  先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学利用p18的表。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。

  同学同桌交流后,再组织全班交流。

  生1:我发现10以内的数只有3、6、9是3的倍数。

  生2:我发现不论横的看或竖的看,3的倍数都是隔两个数出现一次。

  生3:我全部看了一下,刚才前面这位同学的猜测是不对的,3的倍数个位上0~9这十个数字都有可能。

  师:个位上的数字没有什么规律,那么十位上的数有规律吗?

  生:也没有规律,1~9这些数字都出现了。

  师:其他同学还有什么发现吗?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

  师:现在谁能归纳一下3的倍数有什么特征呢?

  生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,假如是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

  同学先自身写数并验证,然后小组交流,得出了同样的结论。

  全班齐读书上的结论。

  三、巩固练习:

  完成p19做一做

  四、课堂小结:

  这节课你有什么收获

《3的倍数的特征》教案4

  教学内容:

  教材19页内容,能被3整除的数的特征。

  教学要求

  使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。

  教学重点:能被3整除的数的特征。

  教学难点:会判断一个数能否被3整除

  教学方法:

  三疑三探教学模式

  教具学具:

  课件等。

  教学过程

  一、设疑自探(10分钟)

  (一)基本练习

  1、能被2、5整除的数有什么特征?

  2、能同时被2 和5整除的数有什么特征?

  (二)揭示课题

  我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)

  (三)让学生根据课题提问题。

  教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)

  (四)出示自探提示,组织学生自探。

  自探提示:

  自学课本19页内容,思考以下问题:

  1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。

  2、能被2、3整除的数有什么特征?

  3、能被2、3、5整除的数有什么特征?

  二、解疑合探(15分钟)

  1、检查自探效果。

  按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。

  2、着重强调;

  一个数各个数位上的数字之和能被3整除,这个数就能被3整除。

  三、质疑再探(4分钟)

  1、学生质疑。

  教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?

  2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)

  四、运用拓展(11分钟)

  (一)学生自编习题。

  1、让学生根据本节所学知识,编一道习题。

  2、展示学生高质量的自编习题,交流解答。

  (二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。

  1、判断下列各数能不能被3整除,为什么?

  72 5679 518 90 1111 20373

  2、58 115 207 210 45 1008

  有因数3的数:( )

  有因数2和3的数:( )

  有因数3和5的数:( )

  有因数2、3和5的数:( )

  让学生说说怎么找的。

  (三)全课总结。

  1、学生谈学习收获。

  教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。

  2、教师归纳总结。

  学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。

  板书设计:

  能被3整除的数的特征 一个数各个数位上的数字之和能被3整除,

  这个数就能被3整除。

《3的倍数的特征》教案5

  教学目标:

  1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自身的语言总结特征。

  2、在探索活动中,感受数学的微妙;在运用规律中,体验数学的价值。

  教学重、难点:是3的倍数的数的特征。

  教学过程:

  一、提出课题,寻找3的特征。

  师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜想一下?

  生1:个位上是3、6、9的数是3的倍数。

  生2:不对,个位上是3、6、9的数不定是3的倍数,如13、16、19都不是3的倍数。

  生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

  师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们一起来研究。(揭示课题)

  师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学人手一张。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  二、自主探索,总结3的特征师:

  先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学利用p18的表。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。

  同学同桌交流后,再组织全班交流。

  生1:我发现10以内的数只有3、6、9是3的倍数。

  生2:我发现不论横的看或竖的看,3的倍数都是隔两个数出现一次。

  生3:我全部看了一下,刚才前面这位同学的猜测是不对的,3的倍数个位上0~9这十个数字都有可能。

  师:个位上的数字没有什么规律,那么十位上的数有规律吗?

  生:也没有规律,1~9这些数字都出现了。

  师:其他同学还有什么发现吗?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

  师:现在谁能归纳一下3的倍数有什么特征呢?

  生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,假如是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

  同学先自身写数并验证,然后小组交流,得出了同样的结论。

  全班齐读书上的结论。

  三、巩固练习:

  完成p19做一做

  四、课堂小结:

  这节课你有什么收获

《3的倍数的特征》教案6

  教学目标

  1、经历探索3的倍数特征的过程,理解其特征,能判断一个数是不是3的倍数。

  2、能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展分析、比较、猜测、验证的能力。

  3、通过归纳、类比猜测等学习数学的活动,体验数学问题的探索性和挑战性,感受数学结论的确定性。

  教学重点

  理解3的倍数的特征

  教学难点

  探索活动中,发现规律,并归纳出3的倍数的特征。

  教学过程

  一、谈话引入,提示课题

  我们已经研究了2,5的倍数的特征,那么3的倍数又会有什么特征呢?(板书课题)

  二、探索交流、获取新知

  1、出示1~100数字表格

  2、找出3的倍数,并做出记号

  3、观察3的倍数,你发现了什么?(生认为没有什么规律,师再引导观察)

  ⑴任意选择几个3的倍数。如42、87、93。

  ⑵板书在黑板上

  ⑶交换个位和十位上的数字,得到24、78、39。

  ⑷判断这三个数是不是3的倍数

  ⑸想一想:交换数位前后的两个数中什么不变?(给足充分的讨论时间)生得到:交换前后两个数字的和不变。

  ⑹引导提问:3的倍数的特征跟一个数各个数位上数字的和有关系,到底有什么关系呢?

  ⑺分析、猜测。生从这几个数字的和,可以看出它们又刚好是3的倍数(6、15、12)

  ⑻验证、归纳

  ①让生随意再找几个3的倍数,利用同样方法,将每个数的各个数字加起来进行验证。

  ②发现规律,进行归纳

  ⑼尝试检验:

  ①出示84、92、102、315。

  ②利用规律进行检验。

  ③小结:这个规律对三位数一样成立。

  三、巩固练习

  第7页的试一试和练一练

  四、板书设计:

  3的倍数的特征

  3的倍数的特征:把一个数各个数位上的数字加起来的和正好是3的倍数。

  五、课后反思:

  略

《3的倍数的特征》教案7

  教学内容:

  教材19页内容,能被3整除的数的特征。

  教学要求

  使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。

  教学重点:

  能被3整除的数的特征。

  教学难点:

  会判断一个数能否被3整除

  教学方法:

  三疑三探教学模式

  教具学具:

  课件等。

  教学过程

  一、设疑自探(10分钟)

  (一)基本练习

  1、能被2、5整除的数有什么特征?

  2、能同时被2 和5整除的数有什么特征?

  (二)揭示课题

  我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)

  (三)让学生根据课题提问题。

  教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)

  (四)出示自探提示,组织学生自探。

  自探提示:

  自学课本19页内容,思考以下问题:

  1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。

  2、能被2、3整除的数有什么特征?

  3、能被2、3、5整除的数有什么特征?

  二、解疑合探(15分钟)

  1、检查自探效果。

  按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。

  2、着重强调;

  一个数各个数位上的数字之和能被3整除,这个数就能被3整除。

  三、质疑再探(4分钟)

  1、学生质疑。

  教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?

  2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)

  四、运用拓展(11分钟)

  (一)学生自编习题。

  1、让学生根据本节所学知识,编一道习题。

  2、展示学生高质量的自编习题,交流解答。

  (二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。

  1、判断下列各数能不能被3整除,为什么?

  72 5679 518 90 1111 20373

  2、58 115 207 210 45 1008

  有因数3的数:( )

  有因数2和3的数:( )

  有因数3和5的数:( )

  有因数2、3和5的数:( )

  让学生说说怎么找的。

  (三)全课总结。

  1、学生谈学习收获。

  教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。

  2、教师归纳总结。

  学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。

  板书设计:

  能被3整除的数的特征 一个数各个数位上的数字之和能被3整除,

  这个数就能被3整除。

《3的倍数的特征》教案8

  教学目标:

  1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自身的语言总结特征。

  2、在探索活动中,感受数学的微妙;在运用规律中,体验数学的价值。

  教学重、难点:

  是3的倍数的数的特征。

  教学过程:

  一、提出课题,寻找3的特征。

  师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜想一下?

  生1:个位上是3、6、9的数是3的倍数。

  生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。

  生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

  师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们一起来研究。(揭示课题)

  师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学人手一张。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  二、自主探索,总结3的特征师:

  先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学利用p18的表。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。

  同学同桌交流后,再组织全班交流。

  生1:我发现10以内的"数只有3、6、9是3的倍数。

  生2:我发现不论横的看或竖的看,3的倍数都是隔两个数出现一次。

  生3:我全部看了一下,刚才前面这位同学的猜测是不对的,3的倍数个位上0~9这十个数字都有可能。

  师:个位上的数字没有什么规律,那么十位上的数有规律吗?

  生:也没有规律,1~9这些数字都出现了。

  师:其他同学还有什么发现吗?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

  师:现在谁能归纳一下3的倍数有什么特征呢?

  生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,假如是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

  同学先自身写数并验证,然后小组交流,得出了同样的结论。

  全班齐读书上的结论。

  三、巩固练习:

  完成p19做一做

  四、课堂小结:

  这节课你有什么收获

《3的倍数的特征》教案9

  学习内容

  3的倍数的特征(教材第10页的内容及教材第11页练习三的第3~6题) 第 1 课时 课型 新授

  学习目标

  1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

  2.引导学生学会判断一个数能否被3整除。

  3.培养学生分析、判断、概括的能力。

  教学重点

  理解并掌握3的倍数的特征

  教学难点

  会判断一个数能否被3整除。

  教具运用

  课件

  教学方法

  二次备课

  教学过程

  【复习导入】

  1.学生口述2的倍数的特征,5的倍数的特征。

  2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

  324 153 345 2460 986 756

  教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

  板书课题:3的倍数的特征。

  【新课讲授】

  1.猜一猜:3的倍数有什么特征?

  2.算一算:先找出10个3的倍数。

  3×1=3 3×2=6 3×3=9

  3×4=123×5=15 3×6=18

  3×7=213×8=24 3×9=27

  3×10=30……

  观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

  提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→21 15→5118→81 24→42 27→72

  教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  (以四人为一小组、分组讨论,然后汇报)

  汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  3.验证:下面各数,哪些数是3的倍数呢?

  21054 216 129 9231 9876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

  4.比一比(一组笔算,另一组用规律计算)。

  判断下面的数是不是3的倍数。

  34025003 1272 2967

  5.“做一做”,指导学生完成教材第10页“做一做”。

  (1)下列数中3的倍数有 。

  143545100 332 876 74 88

  ①要求学生说出是怎样判断的。

  ②3的倍数有什么特征?

  (2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

  ②接着再考虑什么?(最小三位数是100)

  ③最后考虑又是3的倍数。(120)

  【课堂作业】完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

  【课堂小结】同学们,通过今天的学习活动,你有什么收获和感想?

  【课后作业】完成练习册中本课时练习。

  板书设计 第2课时3的倍数的特征

  一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

  【作业设计】

  学习目标, 教学方法, 数学, 教师, 能力。

《3的倍数的特征》教案10

  一、教材内容分析

  《3的倍数的特征》是人教版小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。

  先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难。

  二、教学目标(知识与技能、过程与方法、情感态度与价值观)

  1、通过观察、猜测、验证等活动,让学生经历探索3的倍数的特征的过程理解3的倍数特征,能判断一个数是不是3的倍数。

  2、 使学生在学习过程中积累数学活动的经验,培养学生观察、分析、动手操作及概括问题的能力,发展学生的抽象思维和培养相互间的交流、合作与竞争意识,提高学生的合情推理能力。

  3、通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

  教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

  教学难点:3的倍数的数的特征的归纳过程。

  三、学习者特征分析

  学生在学习本课之前,已经学习了2和5的倍数的特征,养成善于动脑思考、讨论、交流与研究,积极进行小组合作的习惯。可以说,学生有了一定的自学与研究的能力。

  学生容易从末尾数字进行判断这个数是否是3的倍数。所以,在教学本课时,让学生通过观察、思考、分析、归纳等活动,让他们真正理解、掌握、判断3的倍数的方法。

  四、教学策略选择与设计

  根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:

  1、创设情景,激趣导入。

  2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。

  3、采用让学生自主发现的学习方法。

  学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。

  五、教学过程

  教学过程

  一、猜想,激发兴趣

  二、探究,验证猜想

  三、练习,巩固结论

  1、提问:你能用5,6,7三个数字组成一个三位数,使这个数是2的倍数?说说什么样的数一定是2的倍数?可以摆成5的倍数吗?说说怎样摆?什么样的数是5的倍数?

  2、 谈话:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,你能猜猜什么样的数是3的倍数?

  3、提问:同意他的猜想吗?他猜的到底对不对呢?我们一起来研究一下。

  四、总结,拓展延伸

  1、课件出示百数表

  (1)提问:请同学们观察一下,3的倍数个位上是哪些数字?刚才那位同学的猜想正确吗?要判断一个数是不是3的倍数,能不能只看个位?

  (2)究竟什么样的数才是3的倍数呢?这节课我们就来研究3的倍数的特征。(板书课题:3的倍数的特征)

  2、提问: 观察百数表中圈出的3的倍数,你们发现什么?

  (1)引导学生先横着看,竖着看,仍然找不到3的倍数特征。

  (2)引导学生斜着看:第一斜行3,12,21。

  汇报交流:

  ①第一斜行3的倍数交换两个数字的位置后,得到的还是3的倍数。

  ②第一斜行3的倍数各位上数字相加,和是3的倍数。

  (3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?

  (4)将百数图中的数的顺序打乱,刚才大家发现的还正确吗?

  3、操作验证

  (1)在计数器上分别拨出几个3的倍数:12、42、45、75、87看看各用了几颗算珠?

  小结:算珠的个数与3的倍数之间的联系。

  (2)观察这些3的倍数,它们十位与个位上数的和跟3有着怎样的关系?

  教师板书:3的倍数,它各位上的和一定是3的倍数。

  4、学生举例验证此规律在100以外的数是否适用。

  5、运用结论,完成试一试。

  五、课外作业:

  课件出示:

  1、下面的数,那些是3的倍数?

  29 45 51 67 284 196 3456 760058947641587

  组织交流:哪些数是3的倍数?你是怎样判断的?

  2、在每个数的口里填上一个数字,使这个数是3的倍数。

  7口 20口 口12 3口5

  提问: 为什么填这个数?你是怎么想的?还可以填哪些数?

  3、从下面选出三张数字卡片,组成一个是3的倍数的三位数。你一共可以组成多少个这样的三位数?

  0 5 6 7

  4、猜猜老师的年龄:老师的年龄既是2的倍数,又是5的倍数,又是3的倍数,老师今年( )岁。

  5、看谁最聪明?

  23663997是3的倍数吗?你是怎样判断的?

  学生交流,汇报。

  快速判断下列数是不是3的倍数?再用计算器验证前三个。

  369639693、13693692、121212127、18275499、9233……3

  总结:

  当一个数的数位上出现3、6、9时,可以先去掉3、6、9,剩下的数的两个数和是3的倍数,再去掉,最后去掉三个数的和是3的倍数。余下的数是3的倍数。那么这个数就是3的倍数,不是则相反。

  板书设计

  33的倍数的特征

  33的倍数,它各位上的和一定是3的倍数。

  课后作业 研究6和9的倍数的特征。


《3的倍数的特征》教案10篇(扩展2)

——《3的倍数的特征》教案10篇

《3的倍数的特征》教案1

  教学目标

  1、知识与技能

  理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。

  2、过程与方法

  经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。

  3、情感态度与价值观

  感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。

  教学重难点

  【教学重点】

  3的倍数特征。

  【教学难点】

  探究3的倍数特征的过程。教学过程

  教学过程

  一、以旧引新,竞赛导入

  1、请说出2的倍数的特征、5的倍数的特征。

  2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?

  35 158 200 87 65 164 4122

  既是2的倍数又是5的倍数的数有什么特征?

  3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?

  4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!

  5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)

  二、猜想探索,归纳验证

  1、大胆猜想:猜一猜3的倍数有什么特征?

  (1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)

  (2)整理认识。只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?

  2、观察探索:出示第10页表格。

  (1)圈一圈。上表中哪些是3的倍数,把它们圈起来。

  (2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)

  (3)全班交流。横着看圈起的前10个数,个位上的数字有什么规律?十位上的数字呢?判断一个数是不是3的倍数,只看个位行吗?

  (4)问题启发:

  大家再仔细看一看,3的倍数在表中排列有什么规律?

  从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)

  个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)

  每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)

  3、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?

  3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  4、验证结论

  大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。

  (1)尝试验证。(生写数,然后判断、交流、得出结论。)

  (2)集体交流。

  教师说一个数。如342,学生先用特征判断,再用计算器检验。

  一个更大的数。4870599,学生先用特征判断,再用计算器检验。

  5、巩固提高。

《3的倍数的特征》教案2

  教学目标

  1、知识与技能:理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。

  2、过程与方法:经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。

  3、情感态度与价值观:感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。

  教学重难点

  【教学重点】3的倍数特征。

  【教学难点】探究3的倍数特征的过程。教学过程

  教学过程

  一、以旧引新,竞赛导入

  1、请说出2的倍数的特征、5的倍数的特征。

  2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?

  35 158 200 87 65 164 4122

  既是2的倍数又是5的倍数的数有什么特征?

  3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?

  4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!

  5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)

  二、猜想探索,归纳验证

  1、大胆猜想:猜一猜3的倍数有什么特征?

  (1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)

  (2)整理认识。只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?

  2、观察探索:出示第10页表格。

  (1)圈一圈。上表中哪些是3的倍数,把它们圈起来。

  (2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)

  (3)全班交流。横着看圈起的前10个数,个位上的数字有什么规律?十位上的数字呢?判断一个数是不是3的倍数,只看个位行吗?

  (4)问题启发:

  大家再仔细看一看,3的倍数在表中排列有什么规律?

  从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)

  个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)

  每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)

  3、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?

  3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  4、验证结论

  大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。

  (1)尝试验证。(生写数,然后判断、交流、得出结论。)

  (2)集体交流。

  教师说一个数。如342,学生先用特征判断,再用计算器检验。

  一个更大的数。4870599,学生先用特征判断,再用计算器检验。

  5、巩固提高。

《3的倍数的特征》教案3

  教学目标:

  1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自身的语言总结特征。

  2、在探索活动中,感受数学的微妙;在运用规律中,体验数学的价值。

  教学重、难点:是3的倍数的数的特征。

  教学过程:

  一、提出课题,寻找3的特征。

  师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜想一下?

  生1:个位上是3、6、9的数是3的倍数。

  生2:不对,个位上是3、6、9的数不定是3的倍数,如13、16、19都不是3的倍数。

  生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

  师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们一起来研究。(揭示课题)

  师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学人手一张。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  二、自主探索,总结3的特征师:

  先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学利用p18的表。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。

  同学同桌交流后,再组织全班交流。

  生1:我发现10以内的数只有3、6、9是3的倍数。

  生2:我发现不论横的看或竖的看,3的倍数都是隔两个数出现一次。

  生3:我全部看了一下,刚才前面这位同学的猜测是不对的,3的倍数个位上0~9这十个数字都有可能。

  师:个位上的数字没有什么规律,那么十位上的数有规律吗?

  生:也没有规律,1~9这些数字都出现了。

  师:其他同学还有什么发现吗?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

  师:现在谁能归纳一下3的倍数有什么特征呢?

  生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,假如是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

  同学先自身写数并验证,然后小组交流,得出了同样的结论。

  全班齐读书上的结论。

  三、巩固练习:

  完成p19做一做

  四、课堂小结:

  这节课你有什么收获

《3的倍数的特征》教案4

  自学预设:

  自学内容P19做一做,P20的T4-11

  指导方法

  复习:1、判断下面哪些数是2的倍数,哪些数是5的倍数?

  18,25,46,85,100,325,180,90

  2、2的倍数和5的倍数各有什么特征?

  3、既是2的倍数又是5的倍数的数有什么特征?

  思考:

  1、1×3=

  2×3=

  3×3=

  4×3=

  5×3=……..

  你发现上面的式子有什么特点?

  2、3的倍数有什么特点?举例说明

  3、哪些数既是2、5的倍数又是3的倍数?

  小组讨论

  尝试练习

  1、试着完成P19的做一做练习

  2、判断下列数哪些是3的倍数?

  333427180

  69390405300

  教学内容:3的倍数的特征(P19及P20题4~5)

  教学目标:

  ①使学生通过操作自己发现3的倍数的特征,并归纳出3的倍数的特征。

  ②能应用3的倍数的特征,会判断一个数是否是3的倍数。

  ③培养学生观察、分析、概括、推理能力。

  ④让学生在探索发现过程中体验到成功的乐趣,培养学习数学的信心。

  教学重点:探求3的倍数的特征。

  教学难点:会判断一个数是否是3的倍数。

  教学过程:

  一、预习反馈,探究新知

  我们已经知道了2、5倍数的特征,那么3的倍数又有什么特征呢?现在我们就来学习和研究3的倍数的特征(板书课题)

  1.反馈3的倍数的特征。

  (1)思考并回答:

  ①什么样的数是3的倍数?

  ②要想研究3的倍数的特征,应该怎样做?

  (2)学生反馈:(根据学生说的逐一板书,先找出一些3的倍数)

  1×3=35×3=15

  2×3=66×3=18

  3×3=97×3=21

  4×3=128×3=24

  ……

  (3)观察:3的倍数的各位数字又什么特征?它是不是3的倍数?其它位数又什么特征?

  (4)提问:如果老师讲这些3的倍数的各位数字和十位数字调换,它还是3的倍数吗?(学生自己动手验证)

  我们发现:调换位置后还是3的倍数,那么3的倍数有什么奥妙呢?(分组讨论,汇报)可以提示:将各个数字加起来

  汇报:如果把3的倍数的各位上的数字相加,他们的和是3的倍数。

  验证:下面各数,哪些是3的倍数呢?210,54,216,129,9231,9876543204

  (5):一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  2.练习:完成P19做一做

  三、课堂:学生今天学习的内容。

  四、巩固练习:完成P20题4~5

  五、能力拓展:

  (1)在□里填上适当的数,使它是3的倍数

  3□5□1646□400□

  (2)在□里填上适当的数,使它成为偶数,并且是3的倍数。

  □7□3□□06□0□81□□

  (3)有一个数有因数3,又是5的倍数,在两位数中最大的一个数是,在三位数中最小的一个数是。

  六、课后:

  七、作业:

  八、课后反思:

《3的倍数的特征》教案5

  教学目标

  1.让学生探索3.的倍数的特征,会判断一个数是不是3的倍数。

  2.让学生在学习过程中学会运用分析、比较、归纳或猜想、检验等方法,并进一步学会与同学交流。

  教学重难点

  判断一个数是不是3的倍数。

  课前准备

  小黑板、学具卡片

  教学活动

  一、引入新课,激发兴趣

  教师在黑板上写出一组数:5、6、14、18、25、27、36、41、90,问学生:谁能判断出哪些数是3的倍数?(这些都是一些简单的数,估计学生通过口算很快就能判断出来)

  教师再写出几个数:1540、2856、3075,再问:谁能很快判断出哪些数是3的倍数?当学生出现畏难情绪时,教师说:我能很快地说出这几个数当中,2856和3075都是3的倍数。

  谈话:你们会想这是老师预先算好的。你们可以考考老师,不管你报一个什么数,我都能很快地判断出来,你们愿意来试一试吗?

  学生报数,教师很快地回答,并把是3的倍数的数板书在黑板上,再让学生用计算器进行验证。

  谈话:你们一定在想:老师你有什么窍门吗?有啊!你们想知道吗?让我们一起来探索3的倍数的特征。(板书课题:3的倍数的`特征)

  二、自主探索。合作学习

  1.先让学生猜一猜:3的倍数有什么特征?举例说明。

  2.根据学生猜测的结果,讨论:个位上是3、6、9的数是3的倍数吗?

  3.当学生得出3的倍数与个位上的数没有关系时,教师引导学生在小组里用计数器拨几个3的倍数,看每次用了几颗算珠?

  如:84、51、27、90、123、2856、3075,它们用的算珠颗数分别是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+O+7+5—15。

  4.引导学生观察、分析、讨论:用的算珠的颗数有什么共同点?

  每个数所用算珠的颗数都是3的倍数。

  5.提问:这些数所用算珠的颗数跟什么有关系?小组讨论,交流讨论结果。

  一个数是3的倍数,这个数各位上的数的和一定是3的倍数。

  6.进一步验证。

  (1)同桌之间互相报数,验证刚才的结论是否正确。

  (2)用1、2、6可以写成126,还可以组成哪些三位数?这些三位数是3的倍数吗?小组讨论后得出结论:3的倍数,跟数字的位置没有关系,只跟各位数上的数的和有关系。

  7.试一试:如果一个数不是3的倍数,这个数各位上数的和是3的倍数吗?

  在小组里举例验证、讨论交流。得出:一个数不是3的倍数,这个数各位上数的和不是3的倍数。归纳:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  三、运用结论。巩固拓展

  1.做“想想做做”第1题。

  指名口答。提问:你是怎么判断出67不是3的倍数,84是3的倍数的?

  2.做“想想做做”第2题。

  提问:每一题有没有余数与什么有关?有什么关系?谈话:在没有余数的算式下边画横线,看谁做得快。指名报结果,共同评议。

  3.做“想想做做”第3题。

  让学生独立填写,再在小组里交流:你能找到几种不同的填法?

  4.做“想想做做”第4题。

  学生涂完后,指名回答:9的倍数都是3的倍数吗?

  5.做“想想做做”第5题。

  各自组数,并把组成的数记下来。

  指名报答案,全班学生评议。

  6.补充题。

  提问:你今年几岁?再过几年你的岁数是3的倍数?

《3的倍数的特征》教案6

  学习内容

  3的倍数的特征(教材第10页的内容及教材第11页练习三的第3~6题)第 1 课时 课型 新授

  学习目标

  1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

  2.引导学生学会判断一个数能否被3整除。

  3.培养学生分析、判断、概括的能力。

  教学重点

  理解并掌握3的倍数的特征

  教学难点

  会判断一个数能否被3整除。

  教具运用

  课件

  教学方法

  二次备课

  教学过程

  【复习导入】

  1.学生口述2的倍数的特征,5的倍数的特征。

  2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

  324 153 345 2460 986 756

  教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

  板书课题:3的倍数的特征。

  【新课讲授】

  1.猜一猜:3的倍数有什么特征?

  2.算一算:先找出10个3的倍数。

  3×1=3 3×2=6 3×3=9

  3×4=123×5=15 3×6=18

  3×7=213×8=24 3×9=27

  3×10=30……

  观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

  提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→21 15→5118→81 24→42 27→72

  教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  (以四人为一小组、分组讨论,然后汇报)

  汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  3.验证:下面各数,哪些数是3的倍数呢?

  21054 216 129 9231 9876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

  4.比一比(一组笔算,另一组用规律计算)。

  判断下面的数是不是3的倍数。

  34025003 1272 2967

  5.“做一做”,指导学生完成教材第10页“做一做”。

  (1)下列数中3的倍数有。

  143545100 332 876 74 88

  ①要求学生说出是怎样判断的。

  ②3的倍数有什么特征?

  (2)提示:

  ①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

  ②接着再考虑什么?(最小三位数是100)

  ③最后考虑又是3的倍数。(120)

  【课堂作业】完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

  【课堂小结】同学们,通过今天的学习活动,你有什么收获和感想?

  【课后作业】完成练习册中本课时练习。

  板书设计第2课时3的倍数的特征

  一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

  【作业设计】

  学习目标,教学方法,数学,教师,能力。

《3的倍数的特征》教案7

  教学目标:

  1、通过自主探索,掌握2、3、5的倍数的特征。

  2、能判断一个数是不是2、5或3的倍数。

  3、知道奇数和偶数,能判断一个数是偶数还是奇数。

  教学重点:

  2、3、5的倍数的特征。

  教学难点:

  3的倍数的特征是难点。

  教学准备:

  课件。

  教学过程:

  一、引入新课。

  讲解导入:同学们,我们在前几节课中已经掌握了倍数和因数的特征。像2、3、5这些特殊的数,它们的倍数又有哪些特征呢?这节课我们就一起来学习。(板书课题)

  二、探究2的倍数的特征。

  1、引导:同学们都看过电影吧?电影票的票号和电影院入口一般都是怎样设置的?

  2、出示教材第17页主题图,问:双号的号码有什么特点?

  3、引导学生明确奇数和偶数的概念:在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。(板书)

  4、组织学生做“你说我判断”的游戏:同桌合作,一个同学任意说一个数,另一个同学判断一下对方说的是奇数还是偶数;交换角色再做。同桌之间互相说一些数,并判断是偶数还是奇数。

  5、出示“做一做”的题目,让学生完成。(巡视;学生做完后集体订正)

  三、探究5的倍数的特征。

  1、刚才我们学习了2的倍数的特征,了解了奇数和偶数的概念,现在我来考考大家,看大家掌握的怎么样:所有同学,学号是奇数的请举手。(停顿,等学生举完手)所有的同学,学号是偶数的请举手。

  2、好,同学们对奇数和偶数掌握的还是不错的。下面我们继续做游戏:学号是5的倍数的同学请举手。

  3、同学们想一想,哪些数是5的倍数?5的倍数有哪些特征?

  4、出示教材第18页的表,让学生找出1至100中的5的倍数并涂上颜色。提问:涂一涂,你能从表中看出什么规律?(指名板演)

  5、观察一下这些数的个位数,你能得出什么结论?

  6、让学生做教材第18页“做一做”的练习,先分别找出2和5的倍数。

  7、让学生再找一找既是2倍数又是5的倍数的数。提问:你是怎么找到的?

  8、不错,这两种方法都可以找到10的倍数。有些同学还发现了既是2的倍数又是5的倍数的数一定是10的倍数。同学们在观察这些是10的倍数的数,大家能不能总结出10的倍数的特征?

  四、探究3的倍数的特征。

  1、刚才我们学习了2和5的倍数的特征,那么3的倍数又有哪些特征呢?请同学们先把3的倍数找出来,在进行小组讨论,看看3的倍数有什么特征。

  2、观察这些数,大家能不能找到3的倍数的特征?(给学生足够的时间来讨论)

  3、用老方法不能得出3的倍数的特征,怎么办呢?提示:同学们再看看12这个数,研究一下它的个位和十位上的数字,看看能发现什么?

  4、表扬学生的发现,鼓励学生继续探讨:非常棒!同学们在研究一下15、18、21,看看这三个数是不是也符合这个规律。

  5、现在大家是不是可以总结出3的倍数的特征了?(教师同步板书)

  6、现在同学们用自己得出的结论做“做一做”第1题,看看其他数是不是也是这样的。

  7、组织学生做“我说你判断”的游戏。

  8、让学生自主完成“做一做”第2题。

  五、总结。

  组织学生说说这节课学到了哪些知识以及有些什么收获。

  作业

  1、下列哪些数是2的倍数,而不是5的倍数?在对应的括号内画“√”。

  8 10 24 120 88 185()()()()()()

  2、找出下列各数中是3的倍数的数。

  45 76 121 273 690 1234 29 94 302 57 850 2073

  3、写出三个既是3的倍数又是2的倍数的数。

  4、写出三个是3的倍数但不是2和5的倍数的数。

  5、在方框中填一个数,使每个数都是3的倍数。

  8 5 1 34 78 31

  板书设计:

  2、3、5的倍数的特征

《3的倍数的特征》教案8

  教学目标

  1、经历探索3的倍数特征的过程,理解其特征,能判断一个数是不是3的倍数。

  2、能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展分析、比较、猜测、验证的能力。

  3、通过归纳、类比猜测等学习数学的活动,体验数学问题的探索性和挑战性,感受数学结论的确定性。

  教学重点

  理解3的倍数的特征

  教学难点

  探索活动中,发现规律,并归纳出3的倍数的特征。

  教学过程

  一、谈话引入,提示课题

  我们已经研究了2,5的倍数的特征,那么3的倍数又会有什么特征呢?(板书课题)

  二、探索交流、获取新知

  1、出示1~100数字表格

  2、找出3的倍数,并做出记号

  3、观察3的倍数,你发现了什么?(生认为没有什么规律,师再引导观察)

  ⑴任意选择几个3的倍数。如42、87、93。

  ⑵板书在黑板上

  ⑶交换个位和十位上的数字,得到24、78、39。

  ⑷判断这三个数是不是3的倍数

  ⑸想一想:交换数位前后的两个数中什么不变?(给足充分的讨论时间)生得到:交换前后两个数字的和不变。

  ⑹引导提问:3的倍数的特征跟一个数各个数位上数字的和有关系,到底有什么关系呢?

  ⑺分析、猜测。生从这几个数字的和,可以看出它们又刚好是3的倍数(6、15、12)

  ⑻验证、归纳

  ①让生随意再找几个3的倍数,利用同样方法,将每个数的各个数字加起来进行验证。

  ②发现规律,进行归纳

  ⑼尝试检验:

  ①出示84、92、102、315。

  ②利用规律进行检验。

  ③小结:这个规律对三位数一样成立。

  三、巩固练习

  第7页的试一试和练一练

  四、板书设计:

  3的倍数的特征

  3的倍数的特征:把一个数各个数位上的数字加起来的和正好是3的倍数。

  五、课后反思:

  略

《3的倍数的特征》教案9

  学习内容

  3的倍数的特征(教材第10页的内容及教材第11页练习三的第3~6题) 第 1 课时 课型 新授

  学习目标

  1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

  2.引导学生学会判断一个数能否被3整除。

  3.培养学生分析、判断、概括的能力。

  教学重点

  理解并掌握3的倍数的特征

  教学难点

  会判断一个数能否被3整除。

  教具运用

  课件

  教学方法

  二次备课

  教学过程

  【复习导入】

  1.学生口述2的倍数的特征,5的倍数的特征。

  2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

  324 153 345 2460 986 756

  教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

  板书课题:3的倍数的特征。

  【新课讲授】

  1.猜一猜:3的倍数有什么特征?

  2.算一算:先找出10个3的倍数。

  3×1=3 3×2=6 3×3=9

  3×4=123×5=15 3×6=18

  3×7=213×8=24 3×9=27

  3×10=30……

  观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

  提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→21 15→5118→81 24→42 27→72

  教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  (以四人为一小组、分组讨论,然后汇报)

  汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  3.验证:下面各数,哪些数是3的倍数呢?

  21054 216 129 9231 9876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

  4.比一比(一组笔算,另一组用规律计算)。

  判断下面的数是不是3的倍数。

  34025003 1272 2967

  5.“做一做”,指导学生完成教材第10页“做一做”。

  (1)下列数中3的倍数有 。

  143545100 332 876 74 88

  ①要求学生说出是怎样判断的。

  ②3的倍数有什么特征?

  (2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

  ②接着再考虑什么?(最小三位数是100)

  ③最后考虑又是3的倍数。(120)

  【课堂作业】完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

  【课堂小结】同学们,通过今天的学习活动,你有什么收获和感想?

  【课后作业】完成练习册中本课时练习。

  板书设计 第2课时3的倍数的特征

  一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

  【作业设计】

  学习目标, 教学方法, 数学, 教师, 能力。

《3的倍数的特征》教案10

  一、教学目标

  【知识与技能】

  理解和掌握3的倍数的特征,能熟练判断一个数是否是3的倍数。

  【过程与方法】

  经历观察、猜想、推翻猜想、再观察、再猜想、验证的过程,提升逻辑推理能力。

  【情感、态度与价值观】

  在猜想论证的过程中,体会数学的严谨性。

  二、教学重难点

  【重点】3的倍数的特征,判断一个数是否是3的倍数。

  【难点】3的倍数的数的特征的归纳过程。

  三、教学过程

  (一)导入新课

  复习导入:我们是如何研究2、5的倍数的特征的?

  引出继续利用百数表研究3的倍数的特征并出示课题。

  (二)讲解新知

  组织学生在百数表中圈出3的倍数,提出问题:能否猜想3的倍数的特征会与什么有关?

  学生发现从个位探究并不成功,教师顺势引导——单纯横着看找不到什么规律,还能怎么看;或是提示我们只看个位不行还能怎么看。引导学生发现“斜着看时,十位依次增大1,个位依次减小1,总和不变”。

  组织学生小组讨论,重点讨论3的倍数对于个位是否还有特殊要求以及十位与个位的和有没有什么规律,之后教师再组织学生反馈多次举例验证,便可以得出个位可以是任意数且十位和个位的和均为3的倍数。

  提问学生应该如何找到3的倍数,引导学生发现总结规律的必要性。

  师生共同总结得出:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  (三)课堂练习

  1、判断下面的数是否为3的倍数。

  24 58 46 96

  2、尝试在每个数后面加一个数使这个三位数成为3的倍数。

  (四)小结作业

  提问:今天有什么收获?

  带领学生回顾:3的倍数的特征;发现研究倍数的特征,方法却各有不一,体会数学知识的多样性。

  课后作业:

  思考什么样的数字同时是2、3、5的倍数,并尝试列举1000以内的这种数字。

  四、板书设计


《3的倍数的特征》教案10篇(扩展3)

——数学《3的倍数的特征》教案5篇

数学《3的倍数的特征》教案1

  教学目标:

  1、知识与技能

  理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。

  2、过程与方法

  经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。

  3、情感态度与价值观

  感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。

  教学重难点:

  【教学重点】

  3的倍数特征。

  【教学难点】

  探究3的倍数特征的过程。教学过程

  教学过程:

  一、以旧引新,竞赛导入

  1、请说出2的倍数的特征、5的倍数的特征。

  2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?

  35 158 200 87 65 164 4122

  既是2的倍数又是5的倍数的数有什么特征?

  3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?

  4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!

  5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)

  二、猜想探索,归纳验证

  1、大胆猜想:猜一猜3的倍数有什么特征?

  (1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)

  (2)整理认识。只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?

  2、观察探索:出示第10页表格。

  (1)圈一圈。上表中哪些是3的倍数,把它们圈起来。

  (2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)

  (3)全班交流。横着看圈起的前10个数,个位上的数字有什么规律?十位上的数字呢?判断一个数是不是3的倍数,只看个位行吗?

  (4)问题启发:

  大家再仔细看一看,3的倍数在表中排列有什么规律?

  从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)

  个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)

  每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)

  3、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?

  3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  4、验证结论

  大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。

  (1)尝试验证。(生写数,然后判断、交流、得出结论。)

  (2)集体交流。

  教师说一个数。如342,学生先用特征判断,再用计算器检验。

  一个更大的数。4870599,学生先用特征判断,再用计算器检验。

  5、巩固提高

数学《3的倍数的特征》教案2

  【学习内容】

  教材P10例2。

  【学习目标】

  1.经历探索3的倍数的特征的过程,理解3的倍数的特征。(重、难点)

  2.能判断一个数是不是3的倍数。(难点)

  【知识链接 温故知新】

  1.判断下面各数哪些是2的倍数?哪些是5的倍数?哪些既是2的 倍数又是5的倍数?

  92 13 28 70 33 78 125

  50 735 426 515 210 3055 1560

  2的倍数:_________________________________________

  5的倍数:_________________________________________

  既是2的倍数,也是5的倍数:_________________________________________

  2.说一说你是怎样判断的?它们各有什 么特征?

  2的倍数的特征:_________________________________________

  5的倍数的特征:_________________________________________

  既是2的倍数,也是5的倍数的特征:_________________________________________

  【自主学习 个体探究】

  1.下表中哪些数是3的倍数?把它们圈起来或涂上颜色。

  2.观察圈出的数,有什么发现?

  温馨提示:可根据上节课知识的研究方法:找数、观察、猜想、验证、归纳,试着探索3的倍数的特征。

  思路导航:

  1.横着看,圈起来的前10个数,个位分别是哪些数字?判断一个数是不是3的倍数,只看个位行吗?

  2.斜着看,你发现了什么?

  【合作探究 交流分享】

  1.交流与讨论:四人小组交流发现。

  2.探索与猜想:

  (1)横着看,圈起的前 10个数:3,6,9,12,15,18,21,24,27,30

  个位上0-9十个数字都有,只看个位数行吗?

  (2)斜着看,你发现了什么?说说你的发现与猜想,3的倍数的特征是什么?

  任意找几个3的倍数,把各位上的数相加,看看你有什么发现。

  3.验证与归纳:

  (1)根据猜想,每人各想一个符合猜想的数,检验是不是 3的倍数(可用计算器)。

  (2)全班交流:3的倍数的特征是什么?你们验证了哪几个数?

  (3)试着 找一个反例:各位上数的和是3的倍数,但这个数却不是3的倍数。

  (4)归纳3的倍数的特征。

  3的倍数的特征:_______________________________________

  【归纳小结 整合知识】

  这节课我们运用了数学上很重要的研究方法:观察、猜想、验证、归纳,研究3的倍数的特征,与2、5的倍数的特征不同,3的倍数的个位上可以是任何数字。一个数( )是3的倍数,这个数就是3的倍数。课下大家可以运用这种方法,继续研究9的倍数、11的倍数什么特征。

  【当堂检测 达标演练】

  1.判断。

  (1)个位上是3、6、9的数都是3的倍数。 ( )

  (2)是9的倍数的数一定是3的倍数。 ( )

  (3)由7、3、2组成的三位数都是3的倍数。 ( )

  (4)凡是3的倍数的都是奇数。 ( )

  (5)一个非零自然数,不是奇数就是偶数。 ( )

  2.不计算,在没有余数的算式后面画“√”。

  154÷5= 38÷3= 207÷3=

  297÷3= 189÷2= 358÷3=

  3.下面用数字卡片摆出的数中,哪些是3的倍数?在每个数后面增加一张卡片,使这个三位数成为3的倍数。

  4.圈出3的倍数。

  92 75 36 206 65 3051 779 99999

  111 49 165 5988 655 131 222 7203

  思 考:像99999、7203这么大的数,你是怎么判断的?

  学法指导:

  (1)9是3的倍数,99999每一位上都是9,这个数就是3的倍数。

  (2)7203中先把3和0划去,剩下的7+2=9,是3的倍数,所以,这个数是3的倍数。这种方法叫“弃3”法,就是 先把3的倍数划去,剩下的数再相加判断。

  5.根据要求,在□里填上一个合适的数字。

  (1)既是2的倍数,又有因数5。 675□

  (2)是5的倍数,不是2的倍数。 38□

  (3)既是3的倍数,又是5的倍数。 334□

  (4)能同时被2、3、5整除。 8□8□

  【学习反思】

数学《3的倍数的特征》教案3

  教学目标

  1.让学生探索3.的倍数的特征,会判断一个数是不是3的倍数。

  2.让学生在学习过程中学会运用分析、比较、归纳或猜想、检验等方法,并进一步学会与同学交流。

  教学重难点

  判断一个数是不是3的倍数。

  课前准备

  小黑板、学具卡片

  教学活动

  一、引入新课,激发兴趣

  教师在黑板上写出一组数:5、6、14、18、25、27、36、41、90,问学生:谁能判断出哪些数是3的倍数?(这些都是一些简单的数,估计学生通过口算很快就能判断出来)

  教师再写出几个数:1540、2856、3075,再问:谁能很快判断出哪些数是3的倍数?当学生出现畏难情绪时,教师说:我能很快地说出这几个数当中,2856和3075都是3的倍数。

  谈话:你们会想这是老师预先算好的。你们可以考考老师,不管你报一个什么数,我都能很快地判断出来,你们愿意来试一试吗?

  学生报数,教师很快地回答,并把是3的倍数的数板书在黑板上,再让学生用计算器进行验证。

  谈话:你们一定在想:老师你有什么窍门吗?有啊!你们想知道吗?让我们一起来探索3的倍数的特征。(板书课题:3的倍数的特征)

  二、自主探索。合作学习

  1.先让学生猜一猜:3的倍数有什么特征?举例说明。

  2.根据学生猜测的结果,讨论:个位上是3、6、9的数是3的倍数吗?

  3.当学生得出3的倍数与个位上的数没有关系时,教师引导学生在小组里用计数器拨几个3的倍数,看每次用了几颗算珠?

  如:84、51、27、90、123、2856、3075,它们用的算珠颗数分别是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+O+7+5—15。

  4.引导学生观察、分析、讨论:用的算珠的颗数有什么共同点?

  :每个数所用算珠的颗数都是3的倍数。

  5.提问:这些数所用算珠的颗数跟什么有关系?小组讨论,交流讨论结果。

  :一个数是3的倍数,这个数各位上的数的和一定是3的倍数。

  6.进一步验证。(1)同桌之间互相报数,验证刚才的结论是否正确。(2)用1、2、6可以写成126,还可以组成哪些三位数?这些三位数是3的倍数吗?小组讨论后得出结论:3的倍数,跟数字的位置没有关系,只跟各位数上的数的和有关系。

  7.试一试:如果一个数不是3的倍数,这个数各位上数的和是3的倍数吗?

  在小组里举例验证、讨论交流。得出:一个数不是3的倍数,这个数各位上数的和不是3的倍数。归纳:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  三、运用结论。巩固拓展

  1.做“想想做做”第1题。

  指名口答。提问:你是怎么判断出67不是3的倍数,84是3的倍数的?

  2.做“想想做做”第2题。

  提问:每一题有没有余数与什么有关?有什么关系?谈话:在没有余数的算式下边画横线,看谁做得快。指名报结果,共同评议。

  3.做“想想做做”第3题。

  让学生独立填写,再在小组里交流:你能找到几种不同的填法?

  4.做“想想做做”第4题。

  学生涂完后,指名回答:9的倍数都是3的倍数吗?

  5.做“想想做做”第5题。

  各自组数,并把组成的数记下来。

  指名报答案,全班学生评议。

  6.补充题。

  提问:你今年几岁?再过几年你的岁数是3的倍数?

  四、

数学《3的倍数的特征》教案4

  教学目标:

  1、通过自主探索,掌握2、3、5 的倍数的特征。

  2、能判断一个数是不是2、5 或3 的倍数。

  3、知道奇数和偶数,能判断一个数是偶数还是奇数。

  教学重点:

  2、3、5 的倍数的特征。

  教学难点:

  3 的倍数的特征是难点。

  教学准备:

  课件。

  教学过程:

  一、引入新课。

  讲解导入:同学们,我们在前几节课中已经掌握了倍数和因数的特征。像2、3、5 这些特殊的数,它们的倍数又有哪些特征呢?这节课我们就一起来学习。(板书课题)

  二、探究2 的倍数的特征。

  1、引导:同学们都看过电影吧?电影票的票号和电影院入口一般都是怎样设置的?

  2、出示教材第17 页主题图,问:双号的号码有什么特点?

  3、引导学生明确奇数和偶数的概念:在自然数中,是2 的倍数的数叫做偶数(0 也是偶数),不是2 的倍数的数叫做奇数。(板书)

  4、组织学生做“你说我判断”的游戏:同桌合作,一个同学任意说一个数,另一个同学判断一下对方说的是奇数还是偶数;交换角色再做。同桌之间互相说一些数,并判断是偶数还是奇数。

  5、出示“做一做”的题目,让学生完成。(巡视;学生做完后集体订正)

  三、探究5 的倍数的特征。

  1、刚才我们学习了2 的倍数的特征,了解了奇数和偶数的概念,现在我来考考大家,看大家掌握的怎么样:所有同学,学号是奇数的请举手。(停顿,等学生举完手)所有的同学,学号是偶数的请举手。

  2、好,同学们对奇数和偶数掌握的还是不错的。下面我们继续做游戏:学号是5 的倍数的同学请举手。

  3、同学们想一想,哪些数是5 的倍数?5 的倍数有哪些特征?

  4、出示教材第18 页的表,让学生找出1 至100 中的5 的倍数并涂上颜色。提问:涂一涂,你能从表中看出什么规律?(指名板演)

  5、观察一下这些数的个位数,你能得出什么结论?

  6、让学生做教材第18 页“做一做”的练习,先分别找出2 和5 的倍数。

  7、让学生再找一找既是2 倍数又是5 的倍数的数。提问:你是怎么找到的?

  8、不错,这两种方法都可以找到10 的倍数。有些同学还发现了既是2 的倍数又是5 的倍数的数一定是10 的倍数。同学们在观察这些是10 的倍数的数,大家能不能总结出10 的倍数的特征?

  四、探究3 的倍数的特征。

  1、刚才我们学习了2 和5 的倍数的特征,那么3 的倍数又有哪些特征呢?请同学们先把3 的倍数找出来,在进行小组讨论,看看3 的倍数有什么特征。

  2、观察这些数,大家能不能找到3 的倍数的特征?(给学生足够的时间来讨论)

  3、用老方法不能得出3 的倍数的特征,怎么办呢?提示:同学们再看看12 这个数,研究一下它的个位和十位上的数字,看看能发现什么?

  4、表扬学生的发现,鼓励学生继续探讨:非常棒!同学们在研究一下15、18、21,看看这三个数是不是也符合这个规律。

  5、现在大家是不是可以总结出3 的倍数的特征了?(教师同步板书)

  6、现在同学们用自己得出的结论做“做一做”第1 题,看看其他数是不是也是这样的。

  7、组织学生做“我说你判断”的游戏。

  8、让学生自主完成“做一做”第2 题。

  五、总结。

  组织学生说说这节课学到了哪些知识以及有些什么收获。

  作业

  1、下列哪些数是2 的倍数,而不是5 的倍数?在对应的括号内画“√”。

  8 10 24 120 88 185 ()()()()()()

  2、找出下列各数中是3 的倍数的数。

  45 76 121 273 690 1234 29 94 302 57 850 20**

  3、写出三个既是3 的倍数又是2 的倍数的数。

  4、写出三个是3 的倍数但不是2 和5 的倍数的数。

  5、在方框中填一个数,使每个数都是3 的倍数。

  8 5 1 34 78 31

  板书设计:

  2、3、5 的倍数的特征

数学《3的倍数的特征》教案5

  课题3的倍数的特征

  课时 一课时

  一、教材内容分析

  《3的倍数的特征》是人教版小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。

  先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难。

  二、教学目标(知识与技能、过程与方法、情感态度与价值观)

  1、通过观察、猜测、验证等活动,让学生经历探索3的倍数的特征的过程理解3的倍数特征,能判断一个数是不是3的倍数。

  2、 使学生在学习过程中积累数学活动的经验,培养学生观察、分析、动手操作及概括问题的能力,发展学生的抽象思维和培养相互间的交流、合作与竞争意识,提高学生的合情推理能力。

  3、通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

  教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

  教学难点:3的倍数的数的特征的归纳过程。

  三、学习者特征分析

  学生在学习本课之前,已经学习了2和5的倍数的特征,养成善于动脑思考、讨论、交流与研究,积极进行小组合作的习惯。可以说,学生有了一定的自学与研究的能力。

  学生容易从末尾数字进行判断这个数是否是3的倍数。所以,在教学本课时,让学生通过观察、思考、分析、归纳等活动,让他们真正理解、掌握、判断3的倍数的方法。

  四、教学策略选择与设计

  根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:

  1、创设情景,激趣导入。

  2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。

  3、采用让学生自主发现的学习方法。

  学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。

  六、教学过程

  教学过程

  一、猜想,激发兴趣

  二、探究,验证猜想

  三、练习,巩固结论

  1、提问:你能用5,6,7三个数字组成一个三位数,使这个数是2的倍数?说说什么样的数一定是2的倍数?可以摆成5的倍数吗?说说怎样摆?什么样的数是5的倍数?

  2、 谈话:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,你能猜猜什么样的数是3的倍数?

  3、提问:同意他的猜想吗?他猜的到底对不对呢?我们一起来研究一下。

  四、总结,拓展延伸

  1、课件出示百数表

  (1)提问:请同学们观察一下,3的倍数个位上是哪些数字?刚才那位同学的猜想正确吗?要判断一个数是不是3的倍数,能不能只看个位?

  (2)究竟什么样的数才是3的倍数呢?这节课我们就来研究3的倍数的特征。(板书课题:3的倍数的特征)

  2、提问: 观察百数表中圈出的3的倍数,你们发现什么?

  (1)引导学生先横着看,竖着看,仍然找不到3的倍数特征。

  (2)引导学生斜着看:第一斜行3,12,21。

  汇报交流:

  ①第一斜行3的倍数交换两个数字的位置后,得到的还是3的倍数。

  ②第一斜行3的倍数各位上数字相加,和是3的倍数。

  (3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?

  (4)将百数图中的数的顺序打乱,刚才大家发现的还正确吗?

  3、操作验证

  (1)在计数器上分别拨出几个3的倍数:12、42、45、75、87看看各用了几颗算珠?

  小结:算珠的个数与3的倍数之间的联系。

  (2)观察这些3的倍数,它们十位与个位上数的和跟3有着怎样的关系?

  教师板书:3的倍数,它各位上的和一定是3的倍数。

  4、学生举例验证此规律在100以外的数是否适用。

  5、运用结论,完成试一试。

  五、课外作业:

  课件出示:

  1、下面的数,那些是3的倍数?

  29 45 51 67 284 196 3456 760058947641587

  组织交流:哪些数是3的倍数?你是怎样判断的?

  2、在每个数的口里填上一个数字,使这个数是3的倍数。

  7口 20口 口12 3口5

  提问: 为什么填这个数?你是怎么想的?还可以填哪些数?

  3、从下面选出三张数字卡片,组成一个是3的倍数的三位数。你一共可以组成多少个这样的三位数?

  0 5 6 7

  4、猜猜老师的年龄:老师的年龄既是2的倍数,又是5的倍数,又是3的倍数,老师今年( )岁。

  5、看谁最聪明?

  23663997是3的倍数吗?你是怎样判断的?

  学生交流,汇报。

  快速判断下列数是不是3的倍数?再用计算器验证前三个。

  369639693、13693692、121212127、18275499、9233……3

  总结:

  当一个数的数位上出现3、6、9时,可以先去掉3、6、9,剩下的数的两个数和是3的倍数,再去掉,最后去掉三个数的和是3的倍数。余下的数是3的倍数。那么这个数就是3的倍数,不是则相反。

  板书设计

  33的倍数的特征

  33的倍数,它各位上的和一定是3的倍数。

  课后作业 研究6和9的倍数的特征。


《3的倍数的特征》教案10篇(扩展4)

——《2、5倍数的特征》教学设计10篇

《2、5倍数的特征》教学设计1

  教学目标:

  知识与技能

  1、学生经历2、5倍数的特征的探索过程,掌握2、5倍数的特征,会正确判断一个数是不是2、5的倍数。

  2、在观察、猜想、验证和讨论的过程中,提高探究问题和合作学习的能力。

  过程与方法

  在合作学习中培养学生观察、分析、判断的能力,使学生逐渐形成合作意识和初步的探索精神。

  情感、态度和价值观

  培养学生学习习惯的养成,培养学生自主学习的策略,养成良好品质。

  教学重点:归纳、概括2和5的倍数的特征。

  教学难点:运用2和5的倍数的特征解决问题。

  教学过程:

  一、游戏引入

  1、数学王国里的5部落和2部落要召回散落在外的人马了,召回条件:5部落只召回5的倍数,2部落只找回2的倍数。

  2、师生比赛找5的倍数和2的倍数。

  3、老师之所以获胜,是因为运用了“2、5的倍数的特征”(板书课题),看到课题,你有什么问题要问吗?

  同学们有这么多的问题,下面我们就带着这些问题开启今天的探索之旅,一起探究2、5的倍数的特征。

  二、自主探究

  1、拿出尝试研究单,完成第一题。

  读要求,自主找到1—100中2的所有倍数和5的所有倍数。

  2、汇报找倍数的方法和结果。

  三、小组讨论交流

  1、仔细观察5的倍数和2的倍数,看看你有什么发现?把你的想法和小组同学进行交流,共同完成尝试研究单的第二题。

  2、小组讨论。

  四、汇报交流

  1、汇报5的倍数特征。

  (1)哪个小组来汇报5的倍数有什么特征?

  (2)谁能举个更大一些的数来进行验证?

  (3)小结:5的倍数的特征是:个位上是5或0。

  2、汇报2的倍数的特征。

  (1)哪个小组来汇报2的倍数有什么特征?

  (2)谁能举个更大一些的数来进行验证?

  (3)小结:2的倍数的特征是:个位上是2、4、6、8、0。

  3、汇报既是2的倍数又是5的倍数的特征。

  (1)观察最后一列,你有什么发现?

  (2)一个数既是2的倍数,又是5的倍数,有什么特征?

  五、教师点拨

  我们通过观察、比较、猜想、验证知道了5的倍数的特征和2的倍数的特征,以后我们再来判断一个数是不是5的倍数和2的倍数可以只看个位就行了。

  六、挑战自我

  1、将下面的数填写在合适的圈里。

  18、24、30、31、45、56、60、72、75、80、95、100

  2、一本30页的画册,翻开后看到两个页码,其中有一个既是2的倍数,又是5的倍数。想一想:看到的可能是哪两页?

  3、学校举办集体舞比赛,分“双人舞”和“五人舞”两个项目。看下面几个班的学生人数,你认为各班表演哪种舞蹈比较合适?为什么?

  七、总结收获

  这节课你有什么收获?

  八、板书设计2和5的倍数的特征教学设计篇三教学目标:

  1、让学生经历2和5的倍数特征的探索过程,理解并掌握2和5的倍数的特征,会运用这些特征判断一个数是不是2和5的倍数;知道偶数和奇数的意义,会判断一个自然数是偶数还是奇数。

  2、在学习活动中培养学生的观察、分析、比较、概括能力和合情推理能力,增强学生的探索意识,进一步感受数学的奇妙。

《2、5倍数的特征》教学设计2

  目标预设:

  1.让学生经历探索2、5倍数特征的过程,理解2、5倍数的特征,能熟练判断一个数是不是2或5的倍数。

  2. 知道奇数与偶数的含义,能熟练判断一个数是奇数或偶数。

  3.在观察、猜测过程中提高探究问题的能力。

  教学重点、难点

  掌握2、5的倍数的特征,并能迅速作出判断。

  教学过程

  一、复习导入

  1. 到目前,你认识了哪些数?请举例说明。

  2. 怎样能迅速找出一个数的倍数?你能很快说出下列各数的倍数吗?

  二、探索新知

  1.5的倍数的特征

  (1)5的倍数有什么特点?请你在教科书第4页的数表中用自己喜欢的方式做上记号,找出5的倍数。

  (2)观察、思考

  刚才画出来的数都有什么特点?

  (3)合作交流

  先在小组内把自己的想法与同伴交流,语言不要做统一要求。

  (1)验证

  (2)引导学生说出几个较大数,对观察、发现的结果进行检验,看是否正确。

  2.2的倍数

  (1)独立学习

  (2)汇报交流,归纳2的倍数的特征。

  (3)验证

  3.揭示奇数和偶数

  结合2的倍数的特征,了解奇数与偶数的含义。

  三、巩固应用,拓展提高

  1. 猜数游戏。

  规则:同桌两人一组,一名同学说一个数,另一个同学说出是否为2或5的倍数还是奇数、偶数。

  2. 是2的倍数又是5的倍数这个数具备什么条件?

  3. 用0、5、8组成三位数

  这个三位数有因数2

  这个三位数有因数5

  这个三位数有因数2又有因数5

  四、全课小结

  一、作业

  课本相关练习。

  板书:

  2、5的倍数的特征

  5的倍数的特征:个位是0或5

  2的倍数的特征:个位是0、2、4、6、8

  是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

《2、5倍数的特征》教学设计3

  教学目标:

  知识与技能:使学生掌握奇数、偶数的意义,学会判断一个数是奇数还是偶数。

  过程与方法:引导学生自主探索2、5的倍数的特征,并学会正确地判断一个数是否是2、5的倍数。

  情感、态度与价值观:感受探索过程中的基本方法和策略。

  教学重点:

  理解并掌握2、5的倍数的特征及奇数、偶数的概念。

  教学难点:

  灵活运用新知、解决实际问题。

  教学方法:

  观察法和操作法。

  教学过程:

  一、复习导入:

  提问:我们已经学习了有关因数和倍数的知识,谁能举例说明什么叫因数?什么叫倍数?学生举例说明。

  揭题:我们已经学会了求一个数的倍数的方法,这节课我们就来探索2、5的倍数的特征。(板书课题:2、5的倍数的特征)

  二、互动新授:

  1.认识5的倍数的特征。

  (1)操作感知。出示教材第9页“百数表”,让学生认真观察。

  提问:5的倍数有什么特征?在上表中找出5的倍数,并做上记号。(让学生拿出课前准备的“百数表”按要求进行操作)。

  (2)组织交流。提问:5的倍数究竟有什么特征呢?你能根据刚才的操作把自己的发现向同学说一说吗?

  小组交流后指名回答,根据学生的回答,教师总结:

  通过全班交流,引导学生概括出5的倍数的特征:个位上是0或5的数都是5的倍数。

  2.认识2的倍数的特征。

  (1)操作感知。提问:2的倍数有什么特征?

  让学生在“百数表”中找出2的倍数,做上记号,并与同伴说一说这些数有什么特征。学生各自独立动手操作。

  (2)组织交流。指名回答,根据学生的回答,教师呈现表2:

  通过全班交流,引导学生概括出2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。

  (3)认识奇数、偶数。理解奇数和偶数的意义

  从百数表中可以看出,自然数中有一半的数是2的倍数,另一半的数不是2的倍数。我们把2,4,6,8,10,…这些是2的倍数的数叫做偶数(O也是偶数),把l,3,5,7,9,…这些不是2的倍数的数叫做奇(j)数。

  教师提示:如果用a表示自然数,那么可以用2a来表示偶数,用2al来表示奇数。

  举例验证。54是2的倍数.54是偶数;728是2的倍数,728是偶数;245不是2的倍数,245是奇数……由此可以得出:自然数按是不是2的倍数可以分为奇数和偶数两类,也就是说,一个自然数不是奇数就一定是偶数。

  奇数和偶数的特点:自然数的个数是无限的,所以奇数和偶数的个数也是无限的,没有最大的奇数和偶数,只有最小的奇数和偶数,最小的奇数是1,最小的偶数是O。

  3.即时练习。指导学生完成教材第9页“做一做”。

  学生独立完成,教师组织交流,交流时,教师让学生说一说做完这些题目,你发现了什么?不同的学生对这个问题可能有不同的回答,只要合理教师都应给予肯定。如有的学生说:判断一个数是否是5的倍数不是看数位中是否含有5,而是看个位是否是0或5……

  三、巩固练习:

  指导学生完成教材第11~12页“练习三”第1、2题。

  1.第1题:先让学生独立完成,再组织交流。交流时,教师要让学生举例说明判断奇数和偶数的具体方法。

  2.第2题:学生独立完成后再组织交流。交流时,教师要让学生说明每道小题的思考过程,特别要让学生详细说明第(3)题的解题策略。(先想个位是O,再想百位是1,十位是O)

  四、课堂小结:

  师:通过本节课的学习,你有什么收获?

  五、布置作业

  作业:教材第11~12页“练习三”第6、7题。

  板书设计:

  2、5的倍数的特征

  5的倍数的特征:个位上是0或5的数。如:20,75,95…

  2的倍数的特征:个位上是0,2,4,6,8的数,如:8,22,90…

  偶数:2的倍数,如:54,728…

  奇数:不是2的倍数,如:245…

《2、5倍数的特征》教学设计4

  教学目标:

  1、经历探索2、5的倍数特征的过程,理解2,5的倍数特征。能判断一个数是否为2或5的倍数

  2、了解奇、偶数的含义,能判断一个非零自然数是奇数或偶数

  3、在观察、猜测和讨论过程中,发展探求问题和解决问题的能力

  重点难点:

  重点:掌握是2、5倍数的数特征及奇数、偶数的概念。

  难点:灵活运用是2、5倍数的数的特征及奇数、偶数的概念进行综合判断。

  课 型:新授课(概念教学)

  教学时数:1课时

  教学准备:

  教具:百数表

  学具:数字卡片

  教学过程:一、游戏导入,揭示目标

  游戏规则:老师先说一个数,同学们用最快的速度判断这个数是不是2或5的倍数。

  师:同学们都能判断,有的比较慢,也有的速度很快。

  师:为什么有些同学可以这么快就做出了判断呢?老师觉得并不是他比大家聪明,而是因为他通过预习掌握了一个小秘密,想知道这个秘密吗?其实,这个秘密的答案就藏在今天这节课里面。下面我们就一起来探索“2和5的倍数的特征”(板书课题),首先一起来看看本节课的学习目标(课件展示)

  二、自主探究

  (一)自主探索5的倍数的特征(详)

  1、出示课本主题图百数表。在表中找出5的倍数,并用“○”圈出来。

  (学生独立尝试,教师巡视,及时了解学情)

  2、观察所圈出的5的倍数,你发现了什么?

  (先让学生独立思考,然后在小组里交流想法,教师巡视)

  板书学生的发现:个位上是0或5的数是5的倍数。

  3、验证学生发现:

  (1)乘法验证:任意报四个自然数(0除外),然后乘以5,并计算出结果。( )×5=( )

  观察所算出的结果,发现:结果的个位上( )(填是或不是)0或5,由此能验证我的发现是正确的。

  (2)除法验证:任意报4个个位是0或5的自然数(0除外),然后除以5,并计算出结果。

  ( )÷5=( )

  观察所算出的结果,发现:结果( )(填是或不是)整数,即个位上是0或5的数( )(填能或不能)整除5,即个位上是0或5的数( )(填是或不是)5的倍数,由此能验证我的发现是正确的。

  4、总结5的倍数的特征是:个位上是0或5的数是5的倍数。

  (二)独立探究2的倍数的特征(略)

  引导学生把探索5的倍数特征的方法和经验迁移到探索2的倍数的特征的过程中。

  1、汇报:个位上是2,4,6,8,0的数是2的倍数。

  2、教师讲解:2的倍数都是偶数; 不是2的倍数就是奇数。偶数就是我们以前常说的双数,那奇数就是我们常说的单数。

  3、游戏巩固1。

  (1)请学号是偶数的同学站起来;请学号是奇数的同学站起来。

  师:还有坐着的吗?也就是说全班同学的学号不是偶数,就是奇数。

  (2)请学号不是2的倍数的同学坐下,坐下的同学你们的学号是奇数还是偶数?

  (3)剩下的同学你们的学号都是2的倍数吗?你们的学号是什么数?

  (4)请报一下你们学号的个位上的数字,你们学号个位上的数是0,2,4,6,8说明你们的学号都是2的倍数,都是偶数。

  4、游戏巩固2。

  (1)学号是5的倍数的同学站起来,请坐。

  (2)学号是2的倍数的同学站起来,请坐。

  (3)同时站两次的同学站起来,你们为什么站起来两次?(因为他们的学号既是5的倍数,又是2的倍数)

  (4)你们的学号分别是什么?(10,20,30,40)

  (5)你们能否从中发现什么?(先同桌交流,再回答)

  板书:个位上是0的数既是5的倍数,又是2的倍数。

  二、小结:

  个位上是0或5的数是5的倍数,个位上是的数是2或4或6或8或0的数是2的倍数,个位上是0的数既是5的倍数,又是2的倍数。

  2的倍数是偶数;不是2的倍数是奇数。

  三、巩固提高

  1、书本 “练一练”的T1—4。

  2、数字游戏。

  信封里有0—9的数学卡片。

  摸出几可以和“5”组成2的倍数?

  摸出几可以和“5”组成5的倍数?

  四、全课总结

  今天我们研究了什么?你有什么收获?

  板书设计:

  2、5的倍数的特征

  个位上是0或者5的数都是5的倍数。

  个位上是2或4或6或8或0的数都是2的倍数。

  2的倍数都是偶数; 不是2的倍数就是奇数。

  个位上是0的数既是5的倍数,又是2的"倍数。

  2和5的倍数的特征教学设计篇二教学内容:冀教版《数学》四年级上册,第51页~52页。教材分析:

  本节课教材安排了让学生从1~100的自然数表中找出5的所有倍数和2的所有倍数的活动,并要求说一说自己找的方法和结果。然后,引导学生观察找出的数,从中归纳5的倍数有什么特征和2的倍数有什么特征,进而概括出2、5倍数的特征。接着,通过对“想一想”问题的讨论,让学生了解既是2的倍数、又是5的倍数的特征。

  2和5倍数的特征是在学习倍数的基础上进行教学的。它是学好找因数、求最大公因数和最小公倍数的重要基础,还有利于学习约分、通分等知识。因此,掌握能2、5的倍数的特征,对于今后的进一步学习具有十分重要的意义。

《2、5倍数的特征》教学设计5

  教学目标:

  1、自主探索2、5的倍数特征的过程,掌握2、5的倍数的特征,能正确判断一个数是不是2或5的倍数。知道奇数、偶数的含义,能判断一个数是奇数还是偶数。

  2、逐步培养学生的观察力、分析能力、归纳概括能力和数学能力。

  3、加强数学与生活的联系,使学生体会到数学知识来源于生活,应用于生活。

  教学重点、难点

  重点:理解2、5的倍数的特征。

  难点:提高分析、归纳、概括、探究问题的能力

  教学过程:

  一、情境创设,导入新课

  1、同学们,你们喜欢玩数学游戏吗?我们今天玩一个数学游戏,同学们可以随便说一个数,老师马上就能判断出这个数是不是2或5的倍数。(学生举例说数,教师判断)

  2、你们想知道其中的奥秘吗?(激发学生热爱学习的欲望,并揭示课题)

  今天我们一起来研究“2、5的倍数的特征”。

  二、探究新知。

  1、探究2、5的倍数的特征。

  (1)根据看电影这幅图,联系班上的实际情况,请单号同学报数,然后再请双号同学报数并板书。

  (2)探索规律。这些数和2有什么联系?(根据学生发言板书2的倍数)

  (3)观察上面刚才找到的2的倍数,你们发现了什么特征?(小组讨论、交流)

  (4)反馈。请小组代表说一说:你们小组发现2的倍数有什么特征?

  (5)请小组内的同学任意写几个个位上是0、2、4、6、8的数进行验证。

  (6)归纳总结:个位上是0、2、4、6、8的数是2的倍数。(板书)

  (7)练习(出示课本练习三第一题)

  2、自学偶数和奇数的含义。

  (1)根据课本你知道什么?

  是2的倍数的数叫偶数(0也是偶数)。不是2的倍数的数叫奇数。(板书)

  (2)出示练习(第17页做一做),学生口答。

  (3)联系生活,谁能举例说出生活中出现的偶数和奇数?(练习三第二题)

  (3)学生互动(游戏:快速判断)。

  两人小组(一人举例说数,一人判断是偶数还是奇数)。

  3、探究5的倍数的特征。

  (1)哪些同学的学号是5的倍数?(根据学生的发言板书5的倍数)

  (2)你们能在百数表中找出5的倍数吗?用自己喜欢的表达方式在5的倍数上做记号。(学生在课本上动手找)

  (3)自主探索,合作交流,发现规律

  ①谁能说一说找出了哪些数是5的倍数?

  ②刚才我们找到的5的倍数有什么特征?(小组讨论、交流)

  ③反馈。请小组代表说一说:你们小组发现5的倍数有什么特征?

  (4)师生共同归纳总结:个位上是0或5的数是5的倍数。

  (5)哪些同学的学号既是2的倍数,又是5的倍数?请报上你们的学号。(学生得出:个位上是0的数)

  (4)练习(第18页做一做),学生回答后并请个别说出理由。

  (5)学生互动,练习三第三题(一人说数,一人判断)。

  三、加强练习。

  判断

  1、一个自然数不是奇数就是偶数( )

  2、最小偶数的两位数是12、 ( )

  3、同时是2、5倍数的数的个位上的数一定是0、 ( )

  填空

  1、是2的倍数的最小的三位数是( ),

  最大的三位数是( )

  2、是5的倍数的最小的两位数是( ),

  最大的两位数是( )

  选择

  1、( )的数是偶数、

  a、个位上是1、3、5、7、9

  b、个位上是0、2、4、6、8

  2、任何奇数加1后( )

  a、一定是2的倍数

  b、不是2的倍数

  c、无法判断

  4、一个奇数相邻的两个数( )

  b、都是偶数

  c、一个是奇数,一个是偶数

  5、两个偶数的和( )

  a、一定是偶数

  b、可能是偶数

  c、可能是奇数

  6、选出3个是5的倍数的奇数( )

  a、10、20、30 b、15、25、35

  c、10、15、20

  四、总结:

  这节课我们学习了什么?你学会了什么?(教师在学生回答后再进行总结。)

《2、5倍数的特征》教学设计6

  教学内容:

  2、5倍数的特征(P17~18及P20题1~3)

  教学目标:

  ①让学生通过探索2、5倍数的特征过程,掌握2、5倍数的特征,并会正确的判断一个数是否是2、5的倍数。

  ②使学生知道奇数、偶数的意义,会判断一个数是奇数还是偶数。

  ③培养学生观察与分析能力,提高学生的思维水*。

  教学重点:掌握2、5倍数的特征,理解奇数、偶数的概念。

  教学过程:

  一、课前预习:

  自学内容 P17—18 做一做,P20的T1-3

  1、什么叫偶数和奇数?举5个例子

  2、2的倍数有什么特点?举例说明

  3、5的倍数有什么特点?举例说明

  3、哪些数既是2的倍数又是5的倍数?

  尝试练习

  1、试着完成P18的做一做练习

  2、判断下列数哪些是2的倍数,哪些是5的倍数?你发现了什么?

  120 14 36 15 20

  24 25 40 50 86

  二、汇报展示:

  (一)导入

  1、请你说出因数与倍数的含义。

  2、判断谁是谁的倍数?谁是谁的因数?

  (1)12和6 (2)28和7 (3)13和1

  (二)教学实施

  1.学习2的倍数的特征。

  (1)反馈主题图。提问:从这幅图中,你看到了什么?拿座号是多少的同学应该从双号入口进?(学生自由地说)

  (2)提问:先让学生自己去观察2的倍数,看他们有什么特征。如观察有困难,可作提示:看他们的个位有什么特征。

  (3)让学生反馈观察的特征。(板书在黑板上)

  如:2=1×2

  4=2×2

  6=3×2

  8=4×2

  10=5×2

  (4)它们的个位数都有什么特点?(个位是0、2、4、6、8)

  个位是0、2、4、6、8的数都是2的倍数吗?

  学生口答后老师板书:个位上是 0,2,4,6,8的数,都是2的倍数。

  检验:让学生说出几个较大的数对观察的结果进行检验看是否正确。

  2.教学奇数和偶数的概念

  (1)提问:自然数中,2的倍数有多少个?

  教师:自然数中,是2的倍数的数,我们称它为偶数。那么不是2的倍数的数,我们叫它为奇数。

  ①偶数的个位上是: 0、2、4、6、8、。

  ②奇数的个位上是: 1、3、5、7、9、。

  注意:因为0是2的倍数,所以0也是偶数。

  (2)自然数的分类:

  自然数:奇数 偶数

  自然数是无限的,奇数、偶数也是无限的。

  (3)练习:P17做一做

  学生独立完成,讲评时要学生说出判断的根据,要特别强调0也是偶数。

  3.探索5的倍数的特征。

  (1)请学号是5的倍数的同学起立。你们学号的个位数字有什么特征?(个位是0或5)

  (2)观察表格,P18表格,提问:在表中找出5的倍数,你发现了什么?

  (3)提问:5的倍数的个位有什么特征?个位上是0或5的数,都是5的倍数。

  4.探索既是2的倍数,又是5的倍数的特征?

  (1)下面那些数是2的倍数?哪些数是5的倍数?

  24,35,67,90,99,15,60,75,106,130,521,280

  观察:那些数是2的倍数,也是5的倍数?它们有什么特征?这样的数一定是哪些数的倍数?(10的倍数)

  三、反馈检测

  1.完成P20的题1~3。

  (1)先说2的倍数的特征,再让学生涂颜色。

  (2)先说说奇数和偶数的概念,然后到生活中去找奇数和偶数。

  (3)说一说5的倍数的特征。

  2、在1~100的自然数中,2的倍数有()个,5的倍数数有()个。

  3 、比75小,比50大的奇数有()。

  4、个位是( )的数同时是2和5的倍数。

  5、用 0 , 7 , 4 , 5 , 9 五个数字组成 2的倍数;5的倍数;同时是 2 和 5 的倍数的数。

  四课堂小结这节课你学会了什么?有什么收获?

  板书设计

  2、5的倍数的特征

  自然数中,是2的倍数的数叫做偶数(0也是偶数),

  不是2的倍数的数叫做奇数。

《2、5倍数的特征》教学设计7

  教学重点:掌握2、5倍数的特征及奇数、偶数的概念。

  教学难点:灵活运用2、5倍数的特征进行综合判断。

  教材分析:

  本节课内容是在学生学习了因数、倍数概念的基础上进行教学的,它不仅是求最大公因数、最小公倍数的重要基础,也是以后学习约分和通分的必要前提。因此,熟练掌握2、5的倍数特征,对于本单元的学习具有十分重要的意义。

  教学过程:

  一、创设情境,引出课题

  同学们,自从开展大课间活动以来,东关小学举办了多种活动(课件出示照片), “每天锻炼一小时,健康学习一整天”,这就是我们的切身体会。

  (1)请你说一说图中有哪些数学信息?

  生:跳交谊舞的2人一组,跳圆圈舞的5人一组,叠罗汉的3人一组。

  (2)下周学校要举行比赛,如果让你选派人数,每项活动可以选派多少人?

  得出:跳交谊舞的人数都是2的倍数。

  跳圆圈舞的人数都是5的倍数。

  叠罗汉的人数是3的倍数。(板书)

  小结:看来,无论选什么项目,我们所选派的人都应该是2、5、3的倍数。今天我们研究的是2和5的倍数。(板书:2、5的倍数的特征)

  二、合作探究:

  (一)探索5的倍数的特征

  1、师:在自然数中,5的倍数有多少个?(无数个)我们不可能研究所有5的倍数,怎么办呢?那我们就先来研究100以内的5的倍数有什么特征吧!

  2、出示百数表:

  (1)在百数表中用“△”圈出5的倍数。

  (2)观察5的倍数,你有什么发现?将你的发现在小组中交流。

  (四人小组,在组内交流并讨论 。)

  学生汇报:

  板书:(5的倍数:个位上的数是5或0)

  (3)师:你们都发现了5的倍数与个位有关,那么与十位有没有关系?

  (4)举例验证。

  (5)刚才我们研究的是100以内5的倍数的特征,那100以上5的倍数也有这样的特征吗?谁能报一个数我们来试一试。254是5的倍数吗?

  过渡:100以内个位上是0或5的数就是5的倍数,100以上的数也是一样。

  (6)现在你能对5的倍数的特征下一个结论吗?

  过渡:知道5的倍数的特征你能快速判断一个数是不是5的倍数吗?

  (7)出示卡片: 271、375、240、2357 64300这是5的倍数吗?

  (学生判断,说明理由。)

  (二)探索2的倍数特征

  (1)猜一猜:2的倍数可能会有什么特征呢?

  (2)请在你的百数表上,用“o”圈出2的倍数,找完后自己研究发现2的倍数有什么特征?然后小组交流,汇报。

  (3)总结得出:2的倍数的个位是0,2,4,6,8。

  过渡:知道2的倍数的特征你能快速判断一个数是不是2的倍数吗?

  (4)相继出示卡片: 84、215、18、22、703、456、940、57

  这是2的倍数吗?你是怎样想的?

  (5)刚才找5的倍数和2的倍数的特征时,你还有没有其它发现?

  学生:个位上是0的数既是2的倍数,又是5的倍数。

  (三)奇数、偶数的认识

  过渡:同学们,是2的倍数的数和不是2的倍数的数,在数学中都有自己的名称,请同学们自学数学书第74页,看看它们分别叫什么?学生自学。

  (1)学生汇报。(板书:偶数,奇数)

  (2)师:说一说偶数有什么特点?奇数有什么特点?

  (3)师:判断一个数是奇数还是偶数要看什么?

  师:偶数实际上就是我们前面讲的什么数?(双数)

  奇数实际上就是我们前面讲的什么数?(单数)

  (4)出示卡片:请你帮忙分一分哪些是奇数,哪些是偶数?

  三、练习巩固:

  1、请你找一找:

  21 ,1,30, 35, 39, 2, 40,

  12,15, 60,18,72,85,90。

  (1)2的倍数有:—————————————————————

  5的倍数有:—————————————————————

  (2)既是2的倍数又是5的倍数的数有:——————————

  2、火眼金睛辨对错:

  (1)偶数都是2的倍数。 ()

  (2)210既是2的倍数又是5的倍数。 ()

  (3)两个奇数的和不一定是偶数。 ()

  3、□里能填几?

  (1)2的倍数:8□ ,□2

  (2)5的倍数:7□ , □5

  4、小游戏

  (1)请学号是偶数的同学站起来

  (2)请学号是奇数的同学站起来

  全班同学有没有没站起来的?我们研究的数按是不是2的倍数来分,可以分为几类?

  (3)请学号是2的倍数的同学站起来

  (4)请学号是5的倍数的同学站起来

  (5)请学号既是2的倍数又是5的倍数的同学站起来

  四、总结汇报:请你谈谈本节课的收获。五、拓展训练:

  1、同时是2和5的倍数最小的两位数是( ),最大的两位数是( )。

  2、同时是2和5的倍数最小的三位数是( ),最大的三位数是( )。

  3、同时是2和5的倍数最小的四位数是( ),最大的四位数是( )。

  教学反思 :

  本节课中,我采用学生身边的生活实例——大课间活动中各种活动的人数,引发学生的探究欲望,然后通过一系列有序的观察、比较、讨论、合作等手段,从百数表中探究发现2和5的倍数的特征,进而推广总结出所有自然数中2和5的倍数特征,让学生在不断的探索交流中获取知识,理解知识,发展学生的各种能力。

  整节课中,让学生经历“观察——操作——讨论——验证得出结论——解决问题”的探究过程,力求把知识的传授、思维的训练、学习方法的指导、学习能力的培养、数学思想方法的渗透有机融为一体。把数学和生活有机联系起来,使学生体会到数学在现实生活中的作用和价值。

《2、5倍数的特征》教学设计8

  教学内容:

  人教版第十册第二单元《因数和倍数》——2、5倍数的特征

  教学目标:

  1、创设问题情境,引导学生在自主探索的过程中,归纳并掌握2和5的倍数的特征,能判断一个数是不是2或5的倍数;理解奇数、偶数的意义;能正确判断一个数的奇偶性。

  2、通过探索、交流讨论、分析归纳等方法,学生自主探索2、5的倍数特征及奇偶数的意义。

  3、在学习活动中,逐步培养学生的观察分析、归纳和数学抽象能力。

  教学重点:2、5倍数的特征及其奇偶数的意义。

  教学难点:灵活运用2、5的数特征及奇偶数的意义进行综合。

  教学过程:

  一、创设情境,引出课题

  1、谈话:同学们,“每天运动一小时,健康生活一辈子”,阳光体育运动让我们健康快乐成长,让我们一同欣赏活动中的精彩瞬间吧!

  2、课件出示:同学们在跳校园集体舞《小白船》,两人搭配,舞姿优美;这是5人一组的绑腿跑,他们团结合作,在为到达同一目的地而共同努力;这是同学们3人一组在趣味跳绳。

  3、谈话:同学们,看到他们这么投入的运动,你们是不是也有想运动的冲动呢?如果我们班也来进行这些运动项目,你认为各项活动分别选派多少人参加比较合适呢?我们先说集体舞吧,你认为可以选派多少人参加呢?

  4、学生说数,教师板书

  5、提问:13人行不行?为什么?看来同学们刚才说的这些人数,都是经过思考的,那你的根据是什么?谁能用一句话来概括一下,跳集体舞的人数必须是哪些数?——2的倍数!(板书:2 的倍数)

  6、谈话:同样的道理,你们认为参加绑腿跑的人数应该是——5的倍数!(板书)那参加趣味跳绳的人数应该是——3的倍数!(板书)同学个个思路清晰,而且很善于从数学的角度思考问题!今天这节课我们就来研究2、5的倍数特征【板书课题】

  二、探究新知

  (一)2的倍数特征

  1.找2的倍数

  (1)提出要求:同学们,老师现在又将交给你们一项新的任务——集合2的倍数!有信心出色完成任务吗?

  (2)学生自主集合2的倍数:

  预设1:在练习本上用算式按顺序表示出2的倍数。例如:2的1倍是2;2的2倍是4……这样把2的倍数集合起来!

  边说边板书:2×1=2

  2×2=4

  ……

  预设2:在百数表上依次将2的倍数找出并用彩笔做个标记。快,选择你喜欢的方法来集合2的倍数吧。

  (3)暴露资源:这是a同学列举的2的倍数,(齐读)她整理的认真、整齐、有条理!监控:除了他列举出的这些2的倍数,你还能接着写下去吗?能写完吗?看来2的倍数的个数是无限的。

  这是b同学在百数表上标记出的2的倍数。有了百数表这个好帮手,看起来更清楚,一目了然!

  2.合作探究2的倍数特征

  (1)提出问题:请同学们仔细观察你列举的这些等号后面或百数表中标记出的这些2的倍数,看看能不能发现他们的共同特征?(板书:特征)

  (2)小组交流:把你的发现先跟小组里的同学说一说!看看他们是不是也有这样的发现!

  (3)集体交流:【课件:百数表】谁愿意来跟大家说说你发现的2的倍数特征?

  预设:双数——肯定,追问:这些数有什么特征?

  偶数:

  根据学生交流板书:个位上是0、2、4、6、8。

  (4)质疑:我们发现了2的倍数特征,你还有什么疑问吗?

《2、5倍数的特征》教学设计9

  教学内容:书4-5页

  教学目的:

  1、通过观察,发现2和5的倍数的特征。

  2、知道并会判断偶数和奇数,并逐步渗透公倍数。

  教学重、难点:会找两个数公有的倍数。

  教学过程:

  教师活动

  学生活动

  活动一:想一想:

  问:5的倍数有什么特征?在下表找出5的倍数,并做上记号。

  师:读一读5的倍数,观察它们有那些特征?

  根据5的倍数的特征判断5的倍数:

  师:任意说一个数,学生用抢答的形式来判断。

  活动二:试一试:

  1题:在下面数中圈出5的倍数。

  28 45 53 80 75 34 89 95

  汇报:你是怎样判断的?

  2题:在上面表格中找出2的倍数,做上记号,说一说这些数有什么特征。

  自学什么叫偶数,什么叫奇数?

  你说我答:

  你任意说一个数,我来判断是奇数还是偶数?

  活动三:练一练:

  1题:把下列数按要求填入圈内。

  28 35 40 55 10 84 95 78 53 90

  说一说2的倍数有什么特征?5的呢?

  填一填:2的倍数有哪些:

  5的倍数有哪些:

  哪些数既是2的倍数、又是5的倍数?

  2题:食品店云赉5个面包,如果每2个装一袋,能正好装完吗?如果每5个装一袋,能正好装完吗?为什么?

  师:你是怎样判断的?可以不用计算吗?为什么?

  活动四:数学游戏:

  每人准备:0-9的数字卡

  (1)师说要求,生摸。

  问:摸出几可以和“5”组成2的倍数?

  摸出几可以和“5”组成5的倍数?

  (2) 同桌合作:

  一人说要求,一人按要求摸数。

  给5的倍数做记号。

  同桌互相说一说5的倍数的特征。

  指名汇报。

  我的发现:个位是0或5的数都是5的倍数。

  独立圈一圈。

  自学什么叫偶数,什么叫奇数?

  生答:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

  你说我答:同桌一人说数,一人判断。

  学生活动。

  2的倍数有:28 40 10 84 78 90

  5的倍数有:35 40 55 10 95 90

  既是2的倍数、又是5的倍数:40 90

  答:根据2和5的特征来判断,85的个位不是偶数所以不能装完,85 的个位是5,所以能装完。

  课后反思:能被2和5整除的数的特征,相对来说是比较容易发现的,学生觉得很容易接受。在学习了偶数和奇数之后,如果把奇偶数和2、5的倍数特征结合起来,既要选择倍数又要找奇数和偶数学生的判断能力就会减弱。因此要增加一些综合性的练习。

《2、5倍数的特征》教学设计10

  教学目标:

  1、经历自主探索2和5的倍数的特征的过程。

  2、知道2、5的`倍数的特征,会判断一个自然数是不是2和5的倍数。

  3、培养学生的观察、猜想、分析、归纳的能力。愿意与同学交流自己发现的结果,增强学习数学的兴趣。

  教学重点:

  探索、发现2和5的特征。

  教学难点:

  通过探索2、5的倍数的特征,判断一个数是不是2和5的倍数。

  教学准备:

  计算器、练习纸、课件、

  教学过程:

  一、创设情景

  师:同学们,我们一起玩个猜数游戏,好吗?你们任意说出一个自然数,不管是几位数,我都能很快的判断出它是否是2或5的倍数。不信可以试试看。

  学生报数,老师答,同时请大家验证。

  师:同学们的眼神里闪现出惊讶的目光。你们想知道老师为什么不计算就能马上判断出来吗?老师告诉你们,学了今天的知识,你们就知道老师猜数的奥秘了。

  板书课题:2和5的倍数的特征

  二、自主探索

  1、探索5的倍数特征

  (1)引入百数表

  (2)出示课件:百数表,在这些数中找出5的倍数,写出来。

  (3)你们找的数和老师找的相同吗?(课件出示)

  (4)观察5的倍数,你有什么发现?把你的发现说给同桌听听

  (5)归纳:谁来概括一下5的倍数到底有什么特征?

  板书:个位上是0或5的数都是5的倍数

  (6)验证:除了这些数以外,其它5的倍数也有这样的特征吗?请举例验证。

  请你写一个多位数,并且是5的倍数。

  (7)过渡:学习了5的特征有什么好处?

  师随机在黑板上写一个数,让学生猜猜它是不是5的倍数。

  (8)练一练:(出示课件)

  过渡:那172是几的倍数呢?请同学验证。2的倍数有什么特征,想不想研究?下面我们一起研究2的特征。

  2、 探索2的倍数特征

  (1)猜一猜:根据研究5的倍数特征的经验,你猜一猜2的倍数可能会有什么特征呢?

  ( 2 )课件出示:百数表找出2的倍数,(小组合作找出所有2的倍数)。

  (3)汇报后,观察2的倍数的特征,看看你刚才的猜测是不是正确?

  (4)归纳:2的倍数有怎样的特征?

  板书:个位上是0、2、4、6、8的数都是2的倍数

  (5)验证:除了这些数以外,其它2的倍数也有这样的特征吗?请举例验证。

  (6)填一填:(课件出示)

  让学生独立填写后汇报。

  3、 奇数、偶数的再认识

  自然数按是不是2的倍数来分可分为奇数和偶数两大类,2的倍数都是偶数,不是2的倍数就就是奇数

  4、那么既是2的倍数又是5的倍数有什么特征呢?

  比较:判断一个数是不是2或5的倍数,都是看什么?

  结论:个位上是0的数,既是2的倍数又是5的倍数。

  1)在5的倍数中找出2的倍数

  2)在2的倍数中找到5的倍数

  5、试一试:一本30页的画册,任意翻开后看到的页码数,有一个既是2的倍数,又是5的倍数,翻开的可能是哪两页?

  三、巩固深化 (出示课件)

  四、知识拓展

  思考:一个三位偶数,各个数位上的数字的和是12,若这个偶数既是2的倍数又是5的倍数,这个三位偶数可能是多少?

  五、总结

  ①现在,你们知道老师猜数的奥秘了吗?现在老师说数,请同学们判断出它是不是5或2的倍数?

  ②通过今天的学习,你有什么收获?还有什么问题?

  六、布置作业

  第87页第一、二题

  板书设计:

  2、5的倍数的特征

  个位上是0或5的数都是5的倍数

  个位上是0、2、4、6、8的数都是2的倍数


《3的倍数的特征》教案10篇(扩展5)

——《2、5倍数的特征》教学设计10篇

《2、5倍数的特征》教学设计1

  一、课前准备

  1.上节课我们认识了倍数,那么什么是倍数?请举例说明。

  2.你对倍数还有什么认识?

  一个数的最小倍数是它本身,一个数的倍数的个数是无限的,没有最大的倍数。

  二、创设情境

  师生进行猜数游戏,学生说出一个自然数,教师马上判断是否是2、5的倍数。由此引入学习的需求。

  师:同学们,今天老师和你们一起玩个猜数游戏,好吗?你们任意说出一个自然数,不管是几位数,我都能很快的判断出它是否是2或5的倍数。不信可以试试看。

  学生报数,老师答,同时请大家验证。

  三、学生尝试

  教师说数,学生判断。

  师:你们想知道老师为什么不计算就能马上判断出来吗?老师告诉你们,学了今天的知识,你们就知道老师猜数的奥秘了。

  四、自主探索

  1.出示1~100的自然数表,提出找2、5倍数的要求,让学生用自己的方法找出5的倍数、2的倍数。

  师:请同学们打开书86页,看一看在1~100的自然数中,找出5的所有倍数,用红笔圈出来;再找出2的所有倍数,用蓝笔圈出来。

  学生在1~100自然数表中用自己的方法找2、5的倍数,教师巡视指导。

  2.全班交流,先说一说是怎样找的,再说2的倍数有哪些数,5的倍数有哪些数。要给学生充分表达的机会。

  师:谁来说一说你是怎样找的?2和5的倍数分别有哪些?

  生1:我先利用乘法口诀找,一二得二,……,我发现偶数都是2的倍数。

  生2:利用除法找,分别除以2或5,若没有余数就是它们的倍数。

  生3:上节课找出了2、5的倍数,直接圈出来。

  生4:5的倍数好找,除了5,几十5就是整十数。

  3.提出“议一议”的问题,引导学生观察、讨论5的倍数、2的倍数分别有什么特征。要给学生充分的讨论、交流时间。

  师:请同学们仔细观察,5的倍数,有什么特征?

  生:5的倍数个位上不是5就是0。

  生:5的倍数,个位上的数是0或5。

  师:2的倍数又有什么特征?

  生:2的倍数,个位上的数是0、2、4、6、8。

  生:2的倍数都是偶数……

  教师予以肯定并随机指出2的倍数都是偶数,不是2的倍数的就是奇数。

  4.在充分交流的基础上,总结出5的倍数的特征,2的倍数的特征。

  师:根据刚才大家的发现,谁能总结一下,5的倍数有什么特征?2的倍数有什么特征?

  学生可能会说:

  ●个位上是0、2、4、6、8的数都是2的倍数;

  ●个位上是0或5的数都是5的倍数。

  5.师生再次进行猜数游戏,教师说数,让学生判断是2的倍数还是5的倍数。

  师:现在,你们知道老师猜数的奥秘了吗?

  师:现在老师说数,请同学们判断出它是不是5或2的倍数?

  教师随机说数,学生判断。关注学习有困难的同学。

《2、5倍数的特征》教学设计2

  教学目标:

  1、经历探索2、5的倍数特征的过程,理解2,5的倍数特征。能判断一个数是否为2或5的倍数

  2、了解奇、偶数的含义,能判断一个非零自然数是奇数或偶数

  3、在观察、猜测和讨论过程中,发展探求问题和解决问题的能力

  重点难点:

  重点:掌握是2、5倍数的数特征及奇数、偶数的概念。

  难点:灵活运用是2、5倍数的数的特征及奇数、偶数的概念进行综合判断。

  课 型:新授课(概念教学)

  教学时数:1课时

  教学准备:

  教具:百数表

  学具:数字卡片

  教学过程:一、游戏导入,揭示目标

  游戏规则:老师先说一个数,同学们用最快的速度判断这个数是不是2或5的倍数。

  师:同学们都能判断,有的比较慢,也有的速度很快。

  师:为什么有些同学可以这么快就做出了判断呢?老师觉得并不是他比大家聪明,而是因为他通过预习掌握了一个小秘密,想知道这个秘密吗?其实,这个秘密的答案就藏在今天这节课里面。下面我们就一起来探索“2和5的倍数的特征”(板书课题),首先一起来看看本节课的学习目标(课件展示)

  二、自主探究

  (一)自主探索5的`倍数的特征(详)

  1、出示课本主题图百数表。在表中找出5的倍数,并用“○”圈出来。

  (学生独立尝试,教师巡视,及时了解学情)

  2、观察所圈出的5的倍数,你发现了什么?

  (先让学生独立思考,然后在小组里交流想法,教师巡视)

  板书学生的发现:个位上是0或5的数是5的倍数。

  3、验证学生发现:

  (1)乘法验证:任意报四个自然数(0除外),然后乘以5,并计算出结果。( )×5=( )

  观察所算出的结果,发现:结果的个位上( )(填是或不是)0或5,由此能验证我的发现是正确的。

  (2)除法验证:任意报4个个位是0或5的自然数(0除外),然后除以5,并计算出结果。

  ( )÷5=( )

  观察所算出的结果,发现:结果( )(填是或不是)整数,即个位上是0或5的数( )(填能或不能)整除5,即个位上是0或5的数( )(填是或不是)5的倍数,由此能验证我的发现是正确的。

  4、总结5的倍数的特征是:个位上是0或5的数是5的倍数。

  (二)独立探究2的倍数的特征(略)

  引导学生把探索5的倍数特征的方法和经验迁移到探索2的倍数的特征的过程中。

  1、汇报:个位上是2,4,6,8,0的数是2的倍数。

  2、教师讲解:2的倍数都是偶数; 不是2的倍数就是奇数。偶数就是我们以前常说的双数,那奇数就是我们常说的单数。

  3、游戏巩固1。

  (1)请学号是偶数的同学站起来;请学号是奇数的同学站起来。

  师:还有坐着的吗?也就是说全班同学的学号不是偶数,就是奇数。

  (2)请学号不是2的倍数的同学坐下,坐下的同学你们的学号是奇数还是偶数?

  (3)剩下的同学你们的学号都是2的倍数吗?你们的学号是什么数?

  (4)请报一下你们学号的个位上的数字,你们学号个位上的数是0,2,4,6,8说明你们的学号都是2的倍数,都是偶数。

  4、游戏巩固2。

  (1)学号是5的倍数的同学站起来,请坐。

  (2)学号是2的倍数的同学站起来,请坐。

  (3)同时站两次的同学站起来,你们为什么站起来两次?(因为他们的学号既是5的倍数,又是2的倍数)

  (4)你们的学号分别是什么?(10,20,30,40)

  (5)你们能否从中发现什么?(先同桌交流,再回答)

  板书:个位上是0的数既是5的倍数,又是2的倍数。

  二、小结:

  个位上是0或5的数是5的倍数,个位上是的数是2或4或6或8或0的数是2的倍数,个位上是0的数既是5的倍数,又是2的倍数。

  2的倍数是偶数;不是2的倍数是奇数。

  三、巩固提高

  1、书本 “练一练”的T1—4。

  2、数字游戏。

  信封里有0—9的数学卡片。

  摸出几可以和“5”组成2的倍数?

  摸出几可以和“5”组成5的倍数?

  四、全课总结

  今天我们研究了什么?你有什么收获?

  板书设计:

  2、5的倍数的特征

  个位上是0或者5的数都是5的倍数。

  个位上是2或4或6或8或0的数都是2的倍数。

  2的倍数都是偶数; 不是2的倍数就是奇数。

  个位上是0的数既是5的倍数,又是2的倍数。

  2和5的倍数的特征教学设计篇二教学内容:冀教版《数学》四年级上册,第51页~52页。教材分析:

  本节课教材安排了让学生从1~100的自然数表中找出5的所有倍数和2的所有倍数的活动,并要求说一说自己找的方法和结果。然后,引导学生观察找出的数,从中归纳5的倍数有什么特征和2的倍数有什么特征,进而概括出2、5倍数的特征。接着,通过对“想一想”问题的讨论,让学生了解既是2的倍数、又是5的倍数的特征。

  2和5倍数的特征是在学习倍数的基础上进行教学的。它是学好找因数、求最大公因数和最小公倍数的重要基础,还有利于学习约分、通分等知识。因此,掌握能2、5的倍数的特征,对于今后的进一步学习具有十分重要的意义。

《2、5倍数的特征》教学设计3

  通过这节课的教学,使我认识到数学课堂教学活动是一个活泼的、主动的、丰富多彩的活动空间。教学后感觉自己这节课的成功之处有:一是成功的课堂引入。好的开始等于成功了一半。本节课我是这样引入的:同学们,我们前段时间学习了倍数,谁能说几个2的倍数?(只要是对,学生们随便说)谁能说几个5的倍数呢?

  我们知道,一个数的倍数有无数个,如果随机给你一个数,有没有更好的方法来判断是不是2、5的倍数呢?有,如果这节课认真听,你肯定能掌握其中的奥秘。由此引出课题,这样不但大大地调动了学生学习积极性,而且顺其自然地把探索的问题抛给了学生,激起了学生探索的欲望。二是紧密地联系学生的生活。本节课我充分利用了与学生生活密切联系的学号,使学生明白数学来源于生活,生活即是数学。我安排了“请学号是2的倍数的同学举起左手”、“请学号是5的倍数的同学举起右手”的练习,以及判断自己的学号“是不是2或5的倍数”的练习,这些练习内容使枯燥的数字练习变得生动了。这即巩固了学生对奇数和偶数意义的理解。又让学生对规律的运用更加灵活了,学生非常喜欢这样的形式。真正也让学生体会到了“数学源于生活,生活即数学”。

  不足之处是:在如何有效地组织学生开展探索规律时,我认为猜想可以锻炼孩子们的创新思维,但猜想必须具有一定的基础,需要因势利导。在开展探索规律时,我先组织让学生猜想秘诀是什么?由于学生缺乏猜想的依据,因此,他们的思维不够活跃,甚至有的学生在“乱猜”。这说明学生缺乏猜想的方向和思维的空间,也是教师在组织教学时需要考虑的问题。

《2、5倍数的特征》教学设计4

  教学目标:

  知识与技能:使学生掌握奇数、偶数的意义,学会判断一个数是奇数还是偶数。

  过程与方法:引导学生自主探索2、5的倍数的特征,并学会正确地判断一个数是否是2、5的倍数。

  情感、态度与价值观:感受探索过程中的基本方法和策略。

  教学重点:

  理解并掌握2、5的倍数的特征及奇数、偶数的概念。

  教学难点:

  灵活运用新知、解决实际问题。

  教学方法:

  观察法和操作法。

  教学过程:

  一、复习导入:

  提问:我们已经学习了有关因数和倍数的知识,谁能举例说明什么叫因数?什么叫倍数?学生举例说明。

  揭题:我们已经学会了求一个数的倍数的方法,这节课我们就来探索2、5的倍数的特征。(板书课题:2、5的倍数的特征)

  二、互动新授:

  1.认识5的倍数的特征。

  (1)操作感知。出示教材第9页“百数表”,让学生认真观察。

  提问:5的倍数有什么特征?在上表中找出5的倍数,并做上记号。(让学生拿出课前准备的“百数表”按要求进行操作)。

  (2)组织交流。提问:5的倍数究竟有什么特征呢?你能根据刚才的操作把自己的发现向同学说一说吗?

  小组交流后指名回答,根据学生的回答,教师总结:

  通过全班交流,引导学生概括出5的倍数的特征:个位上是0或5的数都是5的倍数。

  2.认识2的倍数的特征。

  (1)操作感知。提问:2的倍数有什么特征?

  让学生在“百数表”中找出2的倍数,做上记号,并与同伴说一说这些数有什么特征。学生各自独立动手操作。

  (2)组织交流。指名回答,根据学生的回答,教师呈现表2:

  通过全班交流,引导学生概括出2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。

  (3)认识奇数、偶数。理解奇数和偶数的意义

  从百数表中可以看出,自然数中有一半的数是2的倍数,另一半的数不是2的倍数。我们把2,4,6,8,10,…这些是2的倍数的数叫做偶数(O也是偶数),把l,3,5,7,9,…这些不是2的倍数的数叫做奇(j)数。

  教师提示:如果用a表示自然数,那么可以用2a来表示偶数,用2al来表示奇数。

  举例验证。54是2的倍数.54是偶数;728是2的倍数,728是偶数;245不是2的倍数,245是奇数……由此可以得出:自然数按是不是2的倍数可以分为奇数和偶数两类,也就是说,一个自然数不是奇数就一定是偶数。

  奇数和偶数的特点:自然数的个数是无限的,所以奇数和偶数的个数也是无限的,没有最大的奇数和偶数,只有最小的奇数和偶数,最小的奇数是1,最小的偶数是O。

  3.即时练习。指导学生完成教材第9页“做一做”。

  学生独立完成,教师组织交流,交流时,教师让学生说一说做完这些题目,你发现了什么?不同的学生对这个问题可能有不同的回答,只要合理教师都应给予肯定。如有的学生说:判断一个数是否是5的倍数不是看数位中是否含有5,而是看个位是否是0或5……

  三、巩固练习:

  指导学生完成教材第11~12页“练习三”第1、2题。

  1.第1题:先让学生独立完成,再组织交流。交流时,教师要让学生举例说明判断奇数和偶数的具体方法。

  2.第2题:学生独立完成后再组织交流。交流时,教师要让学生说明每道小题的思考过程,特别要让学生详细说明第(3)题的解题策略。(先想个位是O,再想百位是1,十位是O)

  四、课堂小结:

  师:通过本节课的学习,你有什么收获?

  五、布置作业

  作业:教材第11~12页“练习三”第6、7题。

  板书设计:

  2、5的倍数的特征

  5的倍数的特征:个位上是0或5的数。如:20,75,95…

  2的倍数的特征:个位上是0,2,4,6,8的数,如:8,22,90…

  偶数:2的倍数,如:54,728…

  奇数:不是2的倍数,如:245…

《2、5倍数的特征》教学设计5

  教学目标:掌握2,5的倍数的特征和奇数偶数的概念。

  教学重点:能正确判断一个数是否是2,5的倍数,是奇数还是偶数。

  教学过程:

  一、复习

  (1)口算:

  0.3×2 1.4×7 5÷0.01 85÷0.5

  12+0.1 0.12+0.6 10-0.1 9.1-1

  (2)写出下面各数的因数或倍数

  9的因数: 12的因数: 36的因数:

  3的倍数: 7的倍数: 11的倍数(50以内):

  二、探究新知

  1、写出2的倍数(20以内):

  讨论找出2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。

  引出:是2的倍数的数叫做偶数,不是是2的倍数的数叫做奇数。

  练习:书本17页的做一做。

  2、出示1——100的数字表,在表中找出5的倍数 。

  讨论找出5的倍数的特征:个位上是0或5的数都是5的倍数。

  练习:下面哪些是2的倍数?哪些是5的倍数?哪些既是2又是5的倍数?

  24 35 67 90 99 15 60 75 106 130 521 280

  讨论找出既是2又是5的倍数的特征:个位上是0

  3、回顾知识点:说出写出2的倍数、5的倍数、既是2又是5的倍数的特征;什么叫做奇数偶数。

  三、练习

  1、举例(每题3个)2的倍数、5的倍数、既是2又是5的倍数、奇数、偶数

  2、书本练习20页1、2、3题

  四、全课总结1、阅读书本17、18页。

  2、自由读特征、概念2遍。

  教学反思: 这节课的主要内容是2,5的倍数的特征以及偶数与奇数的概念。我想这些知识内容与旧知识很密切,并且每个比较明确,所以我设计了通过练习、讨论、列举等方法放手让学生总结每个概念,出乎意料的是:本来是通过2的倍数导入偶数与奇数的概念,可是学生在讨论2的倍数的特征就把偶数与奇数的概念说出来了,并且2的倍数的特征及偶数与奇数特点与关系都说得很准确,那我就把内容随机变化而引导授课,这样的效果也比较好。通过上这节课,使我重新认识到,放手让学生学习数学,老师轻松,学生又快乐。但是本节课也有不足的地方,就是综合练习还不够,还要不断的学习改进。

《2、5倍数的特征》教学设计6

  教学目标:

  1、自主探索2、5的倍数特征的过程,掌握2、5的倍数的特征,能正确判断一个数是不是2或5的倍数。知道奇数、偶数的含义,能判断一个数是奇数还是偶数。

  2、逐步培养学生的观察力、分析能力、归纳概括能力和数学能力。

  3、加强数学与生活的联系,使学生体会到数学知识来源于生活,应用于生活。

  教学重点、难点

  重点:理解2、5的倍数的特征。

  难点:提高分析、归纳、概括、探究问题的能力

  教学过程:

  一、情境创设,导入新课

  1、同学们,你们喜欢玩数学游戏吗?我们今天玩一个数学游戏,同学们可以随便说一个数,老师马上就能判断出这个数是不是2或5的倍数。(学生举例说数,教师判断)

  2、你们想知道其中的奥秘吗?(激发学生热爱学习的欲望,并揭示课题)

  今天我们一起来研究“2、5的倍数的特征”。

  二、探究新知。

  1、探究2、5的倍数的特征。

  (1)根据看电影这幅图,联系班上的实际情况,请单号同学报数,然后再请双号同学报数并板书。

  (2)探索规律。这些数和2有什么联系?(根据学生发言板书2的倍数)

  (3)观察上面刚才找到的2的倍数,你们发现了什么特征?(小组讨论、交流)

  (4)反馈。请小组代表说一说:你们小组发现2的倍数有什么特征?

  (5)请小组内的同学任意写几个个位上是0、2、4、6、8的数进行验证。

  (6)归纳总结:个位上是0、2、4、6、8的数是2的倍数。(板书)

  (7)练习(出示课本练习三第一题)

  2、自学偶数和奇数的含义。

  (1)根据课本你知道什么?

  是2的倍数的数叫偶数(0也是偶数)。不是2的倍数的数叫奇数。(板书)

  (2)出示练习(第17页做一做),学生口答。

  (3)联系生活,谁能举例说出生活中出现的偶数和奇数?(练习三第二题)

  (3)学生互动(游戏:快速判断)。

  两人小组(一人举例说数,一人判断是偶数还是奇数)。

  3、探究5的倍数的特征。

  (1)哪些同学的学号是5的倍数?(根据学生的发言板书5的倍数)

  (2)你们能在百数表中找出5的倍数吗?用自己喜欢的表达方式在5的倍数上做记号。(学生在课本上动手找)

  (3)自主探索,合作交流,发现规律

  ①谁能说一说找出了哪些数是5的倍数?

  ②刚才我们找到的5的倍数有什么特征?(小组讨论、交流)

  ③反馈。请小组代表说一说:你们小组发现5的倍数有什么特征?

  (4)师生共同归纳总结:个位上是0或5的数是5的倍数。

  (5)哪些同学的学号既是2的倍数,又是5的倍数?请报上你们的学号。(学生得出:个位上是0的数)

  (4)练习(第18页做一做),学生回答后并请个别说出理由。

  (5)学生互动,练习三第三题(一人说数,一人判断)。

  三、加强练习。

  判断

  1、一个自然数不是奇数就是偶数( )

  2、最小偶数的两位数是12、 ( )

  3、同时是2、5倍数的数的个位上的数一定是0、 ( )

  填空

  1、是2的倍数的最小的三位数是( ),

  最大的三位数是( )、

  2、是5的倍数的最小的两位数是( ),

  最大的两位数是( )、

  选择

  1、( )的数是偶数、

  a、个位上是1、3、5、7、9

  b、个位上是0、2、4、6、8

  2、任何奇数加1后( )

  a、一定是2的倍数

  b、不是2的倍数

  c、无法判断

  4、一个奇数相邻的两个数( )

  b、都是偶数

  c、一个是奇数,一个是偶数

  5、两个偶数的和( )

  a、一定是偶数

  b、可能是偶数

  c、可能是奇数

  6、选出3个是5的倍数的奇数( )

  a、10、20、30 b、15、25、35

  c、10、15、20

  四、总结:

  这节课我们学习了什么?你学会了什么?(教师在学生回答后再进行总结。)

《2、5倍数的特征》教学设计7

  教学目标:掌握2,5的倍数的特征和奇数偶数的概念。

  教学重点:能正确判断一个数是否是2,5的倍数,是奇数还是偶数。

  教学过程:

  一、复习

  (1)口算:

  0.3×2 1.4×7 5÷0.01 85÷0.5

  12+0.1 0.12+0.6 10-0.1 9.1-1

  (2)写出下面各数的因数或倍数

  9的因数: 12的因数: 36的因数:

  3的倍数: 7的倍数: 11的倍数(50以内):

  二、探究新知

  1、写出2的倍数(20以内):

  讨论找出2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。

  引出:是2的倍数的数叫做偶数,不是是2的倍数的数叫做奇数。

  练习:书本17页的做一做。

  2、出示1——100的数字表,在表中找出5的倍数 。

  讨论找出5的倍数的特征:个位上是0或5的数都是5的倍数。

  练习:下面哪些是2的倍数?哪些是5的倍数?哪些既是2又是5的倍数?

  24 35 67 90 99 15 60 75 106 130 521 280

  讨论找出既是2又是5的倍数的特征:个位上是0

  3、回顾知识点:说出写出2的倍数、5的倍数、既是2又是5的倍数的特征;什么叫做奇数偶数。

  三、练习

  1、举例(每题3个)2的倍数、5的倍数、既是2又是5的倍数、奇数、偶数

  2、书本练习20页1、2、3题

  四、全课总结1、阅读书本17、18页。

  2、自由读特征、概念2遍。

  教学反思: 这节课的主要内容是2,5的倍数的特征以及偶数与奇数的概念。我想这些知识内容与旧知识很密切,并且每个比较明确,所以我设计了通过练习、讨论、列举等方法放手让学生总结每个概念,出乎意料的是:本来是通过2的倍数导入偶数与奇数的概念,可是学生在讨论2的倍数的特征就把偶数与奇数的概念说出来了,并且2的倍数的特征及偶数与奇数特点与关系都说得很准确,那我就把内容随机变化而引导授课,这样的效果也比较好。通过上这节课,使我重新认识到,放手让学生学习数学,老师轻松,学生又快乐。但是本节课也有不足的地方,就是综合练习还不够,还要不断的学习改进。

《2、5倍数的特征》教学设计8

  教学目标:

  知识与技能

  1、学生经历2、5倍数的特征的探索过程,掌握2、5倍数的特征,会正确判断一个数是不是2、5的倍数。

  2、在观察、猜想、验证和讨论的过程中,提高探究问题和合作学习的能力。

  过程与方法

  在合作学习中培养学生观察、分析、判断的能力,使学生逐渐形成合作意识和初步的探索精神。

  情感、态度和价值观

  培养学生学习习惯的养成,培养学生自主学习的策略,养成良好品质。

  教学重点:归纳、概括2和5的倍数的特征。

  教学难点:运用2和5的倍数的特征解决问题。

  教学过程:

  一、游戏引入

  1、数学王国里的5部落和2部落要召回散落在外的人马了,召回条件:5部落只召回5的倍数,2部落只找回2的倍数。

  2、师生比赛找5的倍数和2的倍数。

  3、老师之所以获胜,是因为运用了“2、5的倍数的特征”(板书课题),看到课题,你有什么问题要问吗?

  同学们有这么多的问题,下面我们就带着这些问题开启今天的探索之旅,一起探究2、5的倍数的特征。

  二、自主探究

  1、拿出尝试研究单,完成第一题。

  读要求,自主找到1—100中2的所有倍数和5的所有倍数。

  2、汇报找倍数的方法和结果。

  三、小组讨论交流

  1、仔细观察5的倍数和2的倍数,看看你有什么发现?把你的想法和小组同学进行交流,共同完成尝试研究单的第二题。

  2、小组讨论。

  四、汇报交流

  1、汇报5的倍数特征。

  (1)哪个小组来汇报5的倍数有什么特征?

  (2)谁能举个更大一些的数来进行验证?

  (3)小结:5的倍数的特征是:个位上是5或0。

  2、汇报2的倍数的特征。

  (1)哪个小组来汇报2的倍数有什么特征?

  (2)谁能举个更大一些的数来进行验证?

  (3)小结:2的倍数的特征是:个位上是2、4、6、8、0。

  3、汇报既是2的倍数又是5的倍数的特征。

  (1)观察最后一列,你有什么发现?

  (2)一个数既是2的倍数,又是5的倍数,有什么特征?

  五、教师点拨

  我们通过观察、比较、猜想、验证知道了5的倍数的特征和2的倍数的特征,以后我们再来判断一个数是不是5的倍数和2的倍数可以只看个位就行了。

  六、挑战自我

  1、将下面的数填写在合适的圈里。

  18、24、30、31、45、56、60、72、75、80、95、100

  2、一本30页的画册,翻开后看到两个页码,其中有一个既是2的倍数,又是5的倍数。想一想:看到的可能是哪两页?

  3、学校举办集体舞比赛,分“双人舞”和“五人舞”两个项目。看下面几个班的学生人数,你认为各班表演哪种舞蹈比较合适?为什么?

  七、总结收获

  这节课你有什么收获?

  八、板书设计2和5的倍数的特征教学设计篇三教学目标:

  1、让学生经历2和5的倍数特征的探索过程,理解并掌握2和5的倍数的特征,会运用这些特征判断一个数是不是2和5的倍数;知道偶数和奇数的意义,会判断一个自然数是偶数还是奇数。

  2、在学习活动中培养学生的观察、分析、比较、概括能力和合情推理能力,增强学生的探索意识,进一步感受数学的奇妙。

《2、5倍数的特征》教学设计9

  教学内容:

  人教版第十册第二单元《因数和倍数》——2、5倍数的特征

  教学目标:

  1、创设问题情境,引导学生在自主探索的过程中,归纳并掌握2和5的倍数的特征,能判断一个数是不是2或5的倍数;理解奇数、偶数的意义;能正确判断一个数的奇偶性。

  2、通过探索、交流讨论、分析归纳等方法,学生自主探索2、5的倍数特征及奇偶数的意义。

  3、在学习活动中,逐步培养学生的观察分析、归纳和数学抽象能力。

  教学重点:2、5倍数的特征及其奇偶数的意义。

  教学难点:灵活运用2、5的数特征及奇偶数的意义进行综合。

  教学过程:

  一、创设情境,引出课题

  1、谈话:同学们,“每天运动一小时,健康生活一辈子”,阳光体育运动让我们健康快乐成长,让我们一同欣赏活动中的精彩瞬间吧!

  2、课件出示:同学们在跳校园集体舞《小白船》,两人搭配,舞姿优美;这是5人一组的绑腿跑,他们团结合作,在为到达同一目的地而共同努力;这是同学们3人一组在趣味跳绳。

  3、谈话:同学们,看到他们这么投入的运动,你们是不是也有想运动的冲动呢?如果我们班也来进行这些运动项目,你认为各项活动分别选派多少人参加比较合适呢?我们先说集体舞吧,你认为可以选派多少人参加呢?

  4、学生说数,教师板书

  5、提问:13人行不行?为什么?看来同学们刚才说的这些人数,都是经过思考的,那你的根据是什么?谁能用一句话来概括一下,跳集体舞的人数必须是哪些数?——2的倍数!(板书:2 的倍数)

  6、谈话:同样的道理,你们认为参加绑腿跑的人数应该是——5的倍数!(板书)那参加趣味跳绳的人数应该是——3的倍数!(板书)同学个个思路清晰,而且很善于从数学的角度思考问题!今天这节课我们就来研究2、5的倍数特征【板书课题】

  二、探究新知

  (一)2的倍数特征

  1.找2的倍数

  (1)提出要求:同学们,老师现在又将交给你们一项新的任务——集合2的倍数!有信心出色完成任务吗?

  (2)学生自主集合2的倍数:

  预设1:在练习本上用算式按顺序表示出2的倍数。例如:2的1倍是2;2的2倍是4……这样把2的倍数集合起来!

  边说边板书:2×1=2

  2×2=4

  ……

  预设2:在百数表上依次将2的倍数找出并用彩笔做个标记。快,选择你喜欢的方法来集合2的倍数吧。

  (3)暴露资源:这是a同学列举的2的倍数,(齐读)她整理的认真、整齐、有条理!监控:除了他列举出的这些2的倍数,你还能接着写下去吗?能写完吗?看来2的倍数的个数是无限的。

  这是b同学在百数表上标记出的2的倍数。有了百数表这个好帮手,看起来更清楚,一目了然!

  2.合作探究2的倍数特征

  (1)提出问题:请同学们仔细观察你列举的这些等号后面或百数表中标记出的这些2的倍数,看看能不能发现他们的共同特征?(板书:特征)

  (2)小组交流:把你的发现先跟小组里的同学说一说!看看他们是不是也有这样的发现!

  (3)集体交流:【课件:百数表】谁愿意来跟大家说说你发现的2的倍数特征?

  预设:双数——肯定,追问:这些数有什么特征?

  偶数:

  根据学生交流板书:个位上是0、2、4、6、8。

  (4)质疑:我们发现了2的倍数特征,你还有什么疑问吗?

《2、5倍数的特征》教学设计10

  教学目标:

  1、经历自主探索2和5的倍数的特征的过程。

  2、知道2、5的`倍数的特征,会判断一个自然数是不是2和5的倍数。

  3、培养学生的观察、猜想、分析、归纳的能力。愿意与同学交流自己发现的结果,增强学习数学的兴趣。

  教学重点:

  探索、发现2和5的特征。

  教学难点:

  通过探索2、5的倍数的特征,判断一个数是不是2和5的倍数。

  教学准备:

  计算器、练习纸、课件、

  教学过程:

  一、创设情景

  师:同学们,我们一起玩个猜数游戏,好吗?你们任意说出一个自然数,不管是几位数,我都能很快的判断出它是否是2或5的倍数。不信可以试试看。

  学生报数,老师答,同时请大家验证。

  师:同学们的眼神里闪现出惊讶的目光。你们想知道老师为什么不计算就能马上判断出来吗?老师告诉你们,学了今天的知识,你们就知道老师猜数的奥秘了。

  板书课题:2和5的倍数的特征

  二、自主探索

  1、探索5的倍数特征

  (1)引入百数表

  (2)出示课件:百数表,在这些数中找出5的倍数,写出来。

  (3)你们找的数和老师找的相同吗?(课件出示)

  (4)观察5的倍数,你有什么发现?把你的发现说给同桌听听

  (5)归纳:谁来概括一下5的倍数到底有什么特征?

  板书:个位上是0或5的数都是5的倍数

  (6)验证:除了这些数以外,其它5的倍数也有这样的特征吗?请举例验证。

  请你写一个多位数,并且是5的倍数。

  (7)过渡:学习了5的特征有什么好处?

  师随机在黑板上写一个数,让学生猜猜它是不是5的倍数。

  (8)练一练:(出示课件)

  过渡:那172是几的倍数呢?请同学验证。2的倍数有什么特征,想不想研究?下面我们一起研究2的特征。

  2、 探索2的倍数特征

  (1)猜一猜:根据研究5的倍数特征的经验,你猜一猜2的倍数可能会有什么特征呢?

  ( 2 )课件出示:百数表找出2的倍数,(小组合作找出所有2的倍数)。

  (3)汇报后,观察2的倍数的特征,看看你刚才的猜测是不是正确?

  (4)归纳:2的倍数有怎样的特征?

  板书:个位上是0、2、4、6、8的数都是2的倍数

  (5)验证:除了这些数以外,其它2的倍数也有这样的特征吗?请举例验证。

  (6)填一填:(课件出示)

  让学生独立填写后汇报。

  3、 奇数、偶数的再认识

  自然数按是不是2的倍数来分可分为奇数和偶数两大类,2的倍数都是偶数,不是2的倍数就就是奇数

  4、那么既是2的倍数又是5的倍数有什么特征呢?

  比较:判断一个数是不是2或5的倍数,都是看什么?

  结论:个位上是0的数,既是2的倍数又是5的倍数。

  1)在5的倍数中找出2的倍数

  2)在2的倍数中找到5的倍数

  5、试一试:一本30页的画册,任意翻开后看到的页码数,有一个既是2的倍数,又是5的倍数,翻开的可能是哪两页?

  三、巩固深化 (出示课件)

  四、知识拓展

  思考:一个三位偶数,各个数位上的数字的和是12,若这个偶数既是2的倍数又是5的倍数,这个三位偶数可能是多少?

  五、总结

  ①现在,你们知道老师猜数的奥秘了吗?现在老师说数,请同学们判断出它是不是5或2的倍数?

  ②通过今天的学习,你有什么收获?还有什么问题?

  六、布置作业

  第87页第一、二题

  板书设计:

  2、5的倍数的特征

  个位上是0或5的数都是5的倍数

  个位上是0、2、4、6、8的数都是2的倍数


《3的倍数的特征》教案10篇(扩展6)

——3的倍数的特征说课稿3篇

3的倍数的特征说课稿1

  一、教材分析

  《3的倍数的特征》是人教版实验教材小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。

  教材的安排是先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难,因此,本课的教学目标,我从知识、能力、情感三方面综合考虑,确定教学目标如下:

  1、使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。

  2.通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。以发展学生的抽象思维和培养相互间的交流、合作与竞争意识。

  3.人教版小学数学五年级下册《3的倍数的特征》说课稿:通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

  根据以上的目标,我确定了本课的

  教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

  教学难点:3的倍数的数的特征的归纳过程。

  二、教法和学法。

  根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:

  1、创设情景,激趣导入。

  2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。

  3、采用让学生自主发现的学习方法。

  苏霍姆林斯基说:“在小学面临的许多任务中,首要的任务是教会儿童学习”。这里的学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。

  下面重点说说本课的教学过程设计,我分以下的六个环节进行教学。

  三、教学过程。

  一、复习导入。

  为了能把新旧知识有机地结合起来,达到温故而知新的目的,我出示了这样一道复习题。

  下面的数,哪些是2的倍数?哪些是5的倍数。

  364、420、515、736、1028、905

  让学生回答并说出判断依据,从而进行小结:我们在判断一个数是否是2、5的倍数,都是从一个数的个位上的情况来判定。而今天,我们将学习新的内容,从而引出课题。(板书:3的倍数的特征)

  为了使学生产生探索的兴趣,激发学习动机,形成最佳的学习心理状态,我便充分利用小学生好奇心强这一心理特点,创设了一个《猜一猜》的游戏情境:让学生出题,随意说一个数,老师迅速地作出该数是不是3的倍数的判断,以此来调动学生学习的积极性。

  二、猜想验证。

  由于学生在《猜一猜》游戏中产生了急于探索的热情,我便让学生去作

  猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”。我便引导学生去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。

  三、体验新知。

  由于学生求知欲空前高涨,学习积极性高。这时我出示了一组这样的数据。

  3×1=3、3×2=6、3×3=9、3×4=12、3×5=15、3×6=18、3×7=21……

  并引导学生进行观察发现:

  3、6、9是3的倍数,但12、15、18个位上的数不是3的倍数,再让学生与同桌合作,动手摆小棒,一人摆,一人记录。顺便提出要求:摆小棒时,每个数位上的数是几,就用几根小棒表示。然后观察各位上的数的和,你发现了什么?此时有的学生可能会说:“12个位上的数不是3的倍数,但1+2=3,3是3的倍数”。同时,学生也发现15、18、21各位上的数相加的和也是3的倍数。于是形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。为了验证这一猜想我随即说道:“这么简单的数你会了,那么大一点的数是否也有这样的规律呢?”,接着我便又出示一组这样的数据:30、31、46、134、156、296、463、405、384。要求学生用最快的速度算出各位上的数的和,可以使用计算器,并让学生把结果填到各自的练习卡纸上,然后先跟同桌说说,再把结果汇报结果给老师,尽可能多地提供机会让学生在实践操作中学习,这也正应了美国数学教育家波利亚所说的:“学习任何知识的最佳途径都是由学生自己去发现的”。

  四、归纳总结

  在学习操作验证完成后,我用充足的时间让小组代表上讲台展示成果,说出各自的思考过程,对学生的回答我给予充分的肯定和表扬,引导学生验证自己的发现是否正确,最后达成共识:一个数的各位上的数的和是3的倍数,这个数就3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。

  五、实践应用。

  当学生学会了老师猜数所用的窍门,显然兴致极高,个个跃跃欲试,想一显身手,我便针对小学生的年龄特点和个性差异,以便使不同层次的学生都能得到不同程度的提高,设计了三个不同层次的练习。

  练习1:课本P19做一做1。

  1,下列数中3的倍数有:

  1435451003328767488

  (这是一个基本练习,使全体学生都能对新知识有进一步的理解,达到巩固新知的目的。)

  练习2:

  ①P21页(5、6题),在基本练习的基础上我增设了3道发展题。

  ②把数娃娃送回家。题目如下:

  这样设计的目的是通过判断、选择等题目,使学生在判断中明事理,提高找规律的能力,进一步发展数感。)

  练习3:P21(7题)

  7、在口里填一个数字,使每个数都是3的倍数。

  口74口2口4465口12口1

  (这是一个综合练习,以检验学生综合运用知识的能力,达到举一反三的效果,提高思维的灵活性。)

  六、拓展延伸

  为增添课的趣昧性和挑战性,我让学生畅谈整节课的收获,并让学生式写出一些能同时是2、5的倍数,又是3的倍数,和同伴交流,观察它们有什么特点?

  纵观整节课的教学流程,体现了数学的教学目标是促进学生全面发展的新课标理念,让学生在实践中学会新知,相信能取得良好的教学效果,让每一个学生都能在数学学习中得到不同程度的提高,促进学生的全面发展。我说课完毕谢谢大家!

  附:设板书设计:

  3的倍数的特征

  一个数的各位上的数的和是3的倍数,这个数就是3的倍数。

3的倍数的特征说课稿2

  《3的倍数的特征》这节课是北师大版小学五年级上册第6、7页的内容。在学习本课之前,学生已经掌握了2、5的倍数的特征。

  2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难,因此,本课的教学目标,我从知识、能力、情感三方面综合考虑。

  确定教学目标如下:

  1、理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数。

  2.通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。

  3.通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

  根据以上的目标,我确定了本课的。

  教学重点:

  使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

  教学难点:

  3的倍数的数的特征的归纳过程。

  教法和学法。

  根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:

  1、复习,激趣导入。

  2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。

  3、采用让学生自主发现的学习方法。

  3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。

  教学过程:

  一、复习导入:

  为了能把新旧知识有机地结合起来,达到温故而知新的目的,我出示了这样一道复习题。

  下面的数,哪些是2的倍数?哪些是5的倍数。

  12 18 20 25 48 60 72 90

  让学生回答并说出判断依据,从而进行小结:我们在判断一个数是否是2、5的倍数,都是从一个数的个位上的情况来判定。知道了2和5的倍数的特征,那么你想知道3的倍数有什么特征吗?从而引出课题。(板书:3的倍数的特征)

  二、探究新知1、自主探究3的倍数的特征

  (1)大胆猜想

  为了使学生产生探索的兴趣,激发学习动机,形成最佳的学习心理状态,我便充分利用小学生好奇心强这一心理特点,创设了一个《猜一猜》的游戏情境:让学生出题,随意说一个数,老师迅速地作出该数是不是3的倍数的判断,以此来调动学生学习的积极性。

  (2)猜想验证,体验新知

  由于学生在《猜一猜》游戏中产生了急于探索的热情,我便让学生去作猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”。我便引导学生去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。

  出示百数表

  提问:你能在这些数中找出3的倍数吗?

  仔细观察这些数,并和同桌讨论3的倍数有什么特征?

  通过观察发现,个位数字和十位数字都没有什么规律,但是将各数位上的数字加起来,它们的和都是3的倍数。如:12,十位上的1和个位上的2加起来是3,正好是3的倍数。再如:27,十位上的2和个位上的7加起来的和是9,正好是3的倍数。

  验证:用数小棒的方法和除法进行验证。

  (3)归纳总结

  在学习操作验证完成后,我用充足的时间引导学生自己总结。最后达成共识:一个数的各位上的数的和是3的倍数,这个数就3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。

  2、判断一个数是不是3的倍数的方法

  主要是为了让学生将学到的只是系统化,条理化。

  三、巩固提高

  (1)至(3)题是对新知识的巩固。这样设计的目的是通过判断、填空等题目,使学生在判断中明事理,提高找规律的能力,进一步发展数感。)

  为增添课的趣昧性和挑战性,我让学生畅谈整节课的收获,并让学生式写出一些能同时是2、5的倍数,又是3的倍数,和同伴交流,观察它们有什么特点?

  在自我评价,总结提高部分,我鼓励学生说说本节课你有什么收获,其实也是培养学生独立总结的能力。

  在这节课的设计中,我注重了学生的认知规律,激发了学生的求知欲望,注意了学生的个性张扬,让学生独立思考,合作学习,创新精神得到了培养。努力为学生营造了愉快的学习氛围。

3的倍数的特征说课稿3

  一、教材及学情分析

  本节课是北师大版教材小学数学五年级上册的内容,它是在学生已经掌握了因数和倍数及2、5的倍数特征的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握3的倍数的特征,具有十分重要的意义。

  二、教学目标及教学重、难点

  根据以上对教材及学情的分析,为了让每一个学生都能从本节课的研究活动中得到不同的发展,我设计了以下几个教学目标。

  知识目标:使学生经历探索3的倍数的特征的活动,知道3的倍数的特征,并且能熟练地判断一个数是否是3的倍数。

  能力目标:通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。体会探索数的特征的一些方法。

  情感目标:让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

  基于以上的认识,我确定了本课的。

  教学重点:理解和掌握3的倍数的特征。

  正确判断一个数是否是3的倍数。

  教学难点:探索并理解3的倍数的特征。

  三、教法设计及学法指导

  为达到本节课的教学目标,突出教学重点、突破难点,更好的促进每一位学生的发展,本节课主要采用了以下教学法:

  1、猜想验证讨论交流。2、自主探究体验感悟

  四、教学准备:

  1、教师准备:课件,实物展示*台,实验表格。

  2、学生准备:计数器计算器。

  五、教学程序

  苏霍姆林斯基说:“在小学面临的许多任务中,首要的任务是教会儿童学习”。这里的学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。针对学生的特点,在教学中设计了以下四个与学生的知识基础,个性发展紧密联系的活动。

  活动一复习旧知引发猜想

  “3的倍数的特征”属于数论的范畴,离学生的生活较远,而2、5的倍数的特征是学生学习这一课的基础。我从学生的已有基础出发,先复习了2,5的特征,并通过教师的总结与引导把复习和导入有机结合起来,引导学生去作猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”,而有的学生却有与之不同的想法。进而引发认知冲突,创设了探究的问题情境,激发学生的求知欲望,感受新知的产生过程,明确新课要解决的问题。从而引出课题。并板书:3的倍数的特征

  活动二自主探究合作验证

  本环节意在引导学生通过动手实践、自主探究展示学生不同的学习水*和思维方式,让学生在观察、实验、猜测、验证、推理与交流的数学活动中,初步理解和掌握3的倍数的特征。在这里设计了三个层次的教学:

  1、应用《百数表》,否定错误猜想。

  在学生得出猜想后,我便引导学生找出百数表中3的倍数去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。消除思维定势,否定旧迁移,以此来激发学生的探究欲望

  2.探究实验,发现特征。

  学生刚刚学习了2、5的倍数的特征,从观察数的末尾数字到观察这个数的数字和,具有很大的思维跨度。学生很难通过独立的探究得出3的倍数的特征,这时,教师采用的教学策略就显得尤为重要。本节课,教师采用让学生进行拨珠实验的教学策略较好地解决了这个问题。教师引导学生经历拨珠实验,填表观察,思考发现的过程。从而使学生对3的倍数的特征认识随着实验的不断深入而越来越清晰,他们在实验、探究、猜想、验证的过程中,建构起对3的倍数的特征的整体认知。本节课虽然没有生动的教学情境,但这样做巧妙地把学生推上了学习的主体地位,使学生始终沉浸在一种浓厚的探索氛围之中,他们被数学知识本身的魅力所深深吸引。这样的数学学习活动,才是真正的、生动活泼的、富有个性的认知过程。学生通过表象的累积,思维产生了飞跃,脑海中形成了清晰的数学模型。

  3、举例验证,总结规律。

  让学生在初步发现规律之后,举例验证,体现了从特殊到一般的思维过程。为了验证这一结论,学生用最快的速度算出各位上的数的和是不是3的倍数,并且使用计算器看这个数是不是3的倍数,并让学生汇报验证的过程,尽可能多地提供机会让学生在实践操作中学习,不仅让学生初步学会了举例验证的方法,而且体现了辨证唯物主义的思想。

  活动三应用规律体验感悟

  在这一部分,为使不同层次的学生都能得到不同程度的提高,我设计了四个不同的练习。力争突出重点,突破难点,在遵循学生认知规律的基础上,体现基础性、层次性、灵活性、生活性、趣味性。第(1)题是基本题,使全体学生都能对新知识有进一步的理解,达到巩固新知的目的。有可能的话可以让学生在快速判断中感悟把3的倍数先去掉的判断技巧;第(2)题以图的的形式出示,引导学生利用所学解决生活中的实际问题;第(3)题是在每个数的□里填上一个数字,使这个数是3的倍数。以检验学生综合运用知识的能力,达到举一反三的效果,提高思维的灵活性。第(4)题旨在通过灵活的形式发散学生的思维。

  活动四反思总结自我提高

  这一环节通过师生交流的形式,使学生积极回忆,谈谈这节课的收获。把知识、方法再现的同时,亦体现学生的情感价值观,进一步反思总结,自我提高。

  整节课让学生经历“猜想—验证—操作—再次猜想—再次验证—得出结论—解决问题”的探究过程,实现课程、师生、知识等多层次的互动。整个教学是把知识的传授、思维的训练、学习方法的指导、学习能力的培养、数学思想方法的渗透有机结合起来,取得教学效益和生命质量的整体提升。


《3的倍数的特征》教案10篇(扩展7)

——3的倍数的特征教学反思3篇

3的倍数的特征教学反思1

  本节课能从认识冲突上找到突破点,再小组合作通过填写表格引导学生去发现3的倍数的特征,学生能够清晰的区分和判别3的倍数,并与2、5的倍数作比较,真正理解和辨别这几个数的倍数的特征,学生的掌握情况还是不错的。

3的倍数的特征教学反思2

  【初次实践】

  课始,让学生任意报数,师生比赛谁先判断出这个数是不是3的倍数,正当我沉浸在游戏的情境之中,几个“不识时务者”打乱了课前的预想。“老师,我知道其中的秘密,只要把各个数位上的数加起来,看看是不是3的倍数就行了!”“对!在数学书上就有这句话。”又有几个学生偷偷地打开了数学书。“怎么办?”谜底都被学生揭开了。面对这一生成,我没有死守教案,而是果断地调整了预设,变“探索”为“验证”,将结论板书在黑板上,让学生理解这句话的意思,然后组织学生将百数表中3的倍数圈出来,验证是不是具有这样的特征,最后进行一系列巩固练习……

  [反思]

  课堂上经常会出现类似上述案例中的“超前行为”,即有些学生提前把要探究的新知识和盘托出。我们的习惯做法就是变“探索”为“验证”,当然有些知识的教学采用这种方式是有效的,然而本课中“验证”的过程真能取代“探究发现”的过程吗?仅仅举几个例子试一试,验证方法单一,思维含量低,学生充其量只能算是执行操作命令的“计算器”,又能获得哪些有益的发展?如果经常进行这样的教学,还容易使学生形成浮躁浅薄,不求甚解,甚至只要结论的不良学习风气。怎么办,置之不理吗?如果这样,不仅没有尊重学生已有的知识经验,而且在已经揭开“谜底”的情况下,再试图引导学生进行猜想、实验、发现,体验遭受挫折后取得成功的那种激动,也只能是一种奢望。那么又该如何激发学生探究的热情,促使学生进行深入探究呢?

  【再次实践】

  (与第一次教学情况基本相同,有些学生能够正确地判断一个数是不是3的倍数,这时一些学生却依然感到困惑,我设法将这一困惑激发出来。)

  师:同学们真能干,这么快就知道了3的倍数的特征,上节课我们学习了2、5的倍数的特征只和什么有关?

  生:只和一个数的个位有关。

  师:与今天学习的知识比较一下,你有什么疑问吗?

  生1:为什么判断一个数是不是3的倍数只看个位不行?

  生2:为什么判断一个数是不是2、5的倍数只看个位,而判断是不是3的倍数要看各位上数的和?

  ……

  师:同学们思考问题确实比较深入,提出了非常有研究价值的问题。那我们先来研究一下2、5的倍数为什么只和它的个位有关。

  (学生尝试探索,教师适时引导学生从简单数开始研究,借助小棒或其他方法进行解释。)

  生1:我在摆小棒时发现,十位上摆几就是几十,它肯定是2、5的倍数,因此只要看个位摆几就可以了。

  生2:其实不用摆小棒也可以,我们组发现每个数都可以拆成一个整十数加个位数,整十数当然都是2、5的倍数,所以这个数的个位是几就决定了它是否是2、5的倍数。

  师:同学们想到用“拆数”的方法来研究,是个好办法。

  生3:是否是3的倍数只看个位就不行了。比如13,虽然个位上是3的倍数,但10却不是3的倍数;12虽然个位不是3的倍数,但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的数和个位上的数合起来是不是3的倍数就行了。

  生4:我也是这样想的,我还发现十位上余下的数正好和十位上的数字一样。

  生5:(面带困惑)起初,我也是这样想的,可是在试三十几、四十几时就不行了。余下的数和十位上的数不一样了,比如40除以3只余1,余下的数就和十位数字不同。

  生(部分):对。

  生4:其实40不要拆成39和1,你拆成36和4,余下的数不就和十位数字相同了吗?

  生6:也就是说整十数都可以拆成十位上的数字和一个3的倍数的数。这样只要看十位上的数和个位上的和是不是3的倍数就可以了。

  师:同学们确实很厉害!那三位数、四位数是不是也有这样的规律呢?

  学生用“拆数”的方法继续研究三、四位数,发现和两位数一样,只不过千位、百位上余下的数要依次加到下一位上进行研究。3的倍数的特征在学生头脑中越来越清晰。

  师:同学们通过自己的探索,你们不仅发现了3的倍数的特征,还弄清了为什么有这样的特征。现在你还有哪些新的探索想法呢?

  生1:我想知道4的倍数有什么特征?

  生2:我知道,应该只要看末两位就行了,因为整百、整千数一定都是4的倍数。

  师:你能把学到的方法及时应用,非常棒!

  生3:7或9的倍数有什么特征呢?

  ……

  师:同学们又提出了一些新的、非常有价值的问题,课后可以继续进行探索。

  [反思]

  1. 找准知识间的冲突,激发探究的愿望。学生刚刚学习了2、5的倍数的特征,知道只要看一个数的个位,因此在学习3的倍数的特征时,自然会把“看个位”这一方法迁移过来。而实际上,3的倍数的特征,却要把各个位上的数加起来研究。于是新旧知识之间的矛盾冲突使学生产生了困惑,“为什么2或5的倍数只看个位?”“为什么3的倍数要把各个位上的数加起来研究?”……学生急于想了解这些为什么,便会自觉地进入到自主探究的状态之中。知识不是孤立的,新旧知识有时会存在矛盾冲突,教师如能找准知识间的冲突并巧妙激发出来,就能激起学生探究的愿望。这样不仅有利于学生对新知的掌握,有效地将新知纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。

  2. 激活学习中的困惑,让探究走向深入。创造和发现往往是由惊讶和困惑开始。对比两次教学,第一次教学由于忽视了学习中的困惑,学生对于3的倍数的特征理解并不透彻,探索的体验也并不深刻。第二次教学留给学生质疑的时空,巧设冲突,让学生进行新旧知识的对比,将困惑激发出来,通过学生间相互启发、相互质疑,对问题的思考渐渐完整而清晰。学生不但经历由困惑到明了的过程,而且思维不断走向深入,获得了更有价值的发现,探究能力也得到切实提高。学生在学习中难免会产生困惑,这种困惑有时是学生希望理解更全面、更深刻的表现。面对这些有价值的思考,我们要有敏锐的洞察力,采取恰当的方法将其激活,促使探究活动走向深入,让学生获得更大的发展。当然,学生在学习中可能产生怎样的困惑,面对这一困惑又该如何恰当引导,尚需要教师课前精心预设。

  3. 沟通知识间的联系,让学生不断探究。显然,2、5的倍数的特征与3的倍数的特征是相互联系的,其研究方法是相通的(都可以通过“拆数”进行观察),特征的本质也是相同的。这种研究方法和特征本质的及时沟通,激发了学生继续研究4、7、9……的倍数的特征的好奇心,促使学生不断探究,将学习由课内延伸到课外,并在探究过程中建构起对数的倍数特征的整体认识,感悟数学其实就是以一驭万,以简驭繁。课堂不是句号,学生的发展始终是教学的落脚点。我们的教学绝不能仅仅局限于学生对于一堂课知识的掌握,而应着眼于学生对于解决问题方法的感悟,获得可持续发展的动力。

3的倍数的特征教学反思3

  《3的倍数的特征》的教学是五下数学第二单元“因数与倍数”中一个知识点,是在学生已认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。因而在《3的倍数的特征》的开始阶段我复习了2、5的倍数的特征之后就让学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2.5的倍数的特征”迁移到“3的倍数特征的问题中, 得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。

  在问题情境中让学生产生认知冲突,萌发疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把 3 的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征 。学生在经历了猜测、分析、判断、验证、概括、等一系列的数学活动后感悟和理解了3的倍数的特征,引导学生真正发现:3的倍数各位上数的和一定是3的倍数;不是3的倍数各位上数的和一定不是3的倍数。从而,使学生明确3的倍数的特征,然后进行练习与拓展。这样的探究学习比我们老师直接教给他们答案要扎实许多,之后的知识应用学生就相应比较灵活和自如,效果较好。

  这节课结束后,我感觉最大的缺憾之处在最后的拓展练习上,由于自己事先练习下水没有做足,所以误导了学生。题目如下:“从3、0、4、5这四个数中,选出两个数字组成一个两位数,分别满足以下条件:

  1、是3的倍数。

  2、同时是2和3的倍数。

  3、同时是3和5的倍数。

  4、同时是2、3和5的倍数。”学生问要写几个时,我回答如果数量很多至少写3个。呵呵,其实此题不需要如此考虑,因为它们的数量都有限。

  希望以后自己的教学会更扎实起来。


《3的倍数的特征》教案10篇(扩展8)

——2,5倍数的特征说课稿200篇

2,5倍数的特征说课稿1

  一,说教材:

  这部分内容是在学生掌握了倍数概念的基础上进行教学的。它是学好找因数、求最大公约数和最小公倍数的重要基础,还有利于学习约分、通分知识。因此,掌握能2.5的倍数的特征,对于本单元的内容具有十分重要的意义。

  二,设计理念:

  所谓预习就是学生在学习新知识前,通过自学对新知识有初步的认识,形成一定的知识表象,或激活一定的前期经验和已有知识基础。通过预习,学生可以复习、掌握一些旧有的知识,初步认识知识的构架和网络,为完成由旧到新、由浅入深、由简单到复杂、由具体到抽象的知识迁移奠定基础。也就是说,课前预习起到了一个承前启后的作用,为掌握新知识做好知识方面的准备。

  通过预习,给学生提供了一个培养自学能力的舞台。预习时学生会努力搜集已有的知识和经验来理解、分析新知识,这个过程正是在锻炼学生自主学习、提出问题和分析问题的能力。久而久之,学生的自学能力将逐步提高。

  这节课是先安排学生进行预习后再进行的,因为是刚开始实施预习后的课堂教学,所以之前我已经给学生安排了具体的预习步骤。所以探究新知识的时候我从学生已掌握的知识点切入,让学生说出预习之后,所获得的知识。从而让学生自主学习、自主探究。讲完所有内容之后再进行反馈,让孩子们对自己昨天预习的内容进行修正,再进行自我评价,肯定学生学习的效果,从而提高学生预习的积极性。

  三,本课题的教学目标:

  知识目标:1,使学生掌握2,5的倍数的特征。

  2,使学生知道奇数,偶数的概念。

  能力目标:1,会判断一个数是不是2,5的倍数。

  2,能举出生活中的数,再判断是奇数还是偶数。

  3,培养类推能力及主动获取知识的能力。

  情感目标:培养学生预习的积极性。

  教学重点:掌握2,5的倍数的特征及奇数,偶数的概念。

  教学难点:1,掌握既是2的倍数,又是5的倍数的特征。

  2,利用所学知识解决生活中的数学问题。

  四,说教法状语从句:学行业释义法律:

  由于2.5的倍数的特征学起来易懂,因此在教学本课时,主要采用如下的教法和学法:

  1,布置预习,引导探究

  先给学生布置一些预习任务,让孩子们先对这节课所学的内容有一定的了解,再带着问题听这节课。上课的时候再学生已有的知识基础上加以引导,探究这节课所学的内容。

  2,加强练习,强化反馈

  学生汇报完所预习内容之后,让学生对自己的预习成果有一个反馈,让学生初步掌握预习方法。因为预习之后初步掌握了一些知识,课上再对这些知识进行探究,所以一些基础性的练习题就没有安排,练习题的难度稍微设计得高了,考虑到今后学习的需要,要求学生能够熟练运用能2.5的倍数的特征,因此在本课中设计了“生活中的数学”、“闯关我能行”等练习,来巩固新知识。

  五,说教学程序:

  1,走进课堂,汇报总结

  因为是预习后的课,所以我直接问“昨天老师布置了预习作业,你都学会了什么”从孩子们掌握的知识切入,进行新授。让学生总结出2.5的倍数的特征,奇数与偶数的概念,以及既是2的倍数,又是5的倍数的特征。

  二,尝试练习

  检验学生预习效果,这是数学预习不可缺少的过程。数学学科有别于其他学科的一大特点就是要用数学知识解决问题。学生经过自己的努力初步理解和掌握了新的数学知识,要让学生通过做练习或解决简单的问题来检验自己预习的效果。既能让学生反思预习过程中的漏洞,又能让老师发现学生学习新知识时较集中的问题,以便课堂教学时抓住重、难点。因为是预习之后的课,所以练习题的难度比较高,安排了不同难度的练习题来巩固新知识。

  三,设置下节课预习任务

  设置下节课的预习任务,是进行下节课内容的铺垫,让孩子们按着一定的方案有计划、有目标地对下节课进行预习,以便下节课的教学活动。


《3的倍数的特征》教案10篇(扩展9)

——3的倍数的特征教学后记60篇

3的倍数的特征教学后记1

  《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。

  1、找准知识冲突激发探索愿望。

  找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。

  2、 激发学习中的困惑,让探究走向深入。

  找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,刚开始我们先采用课本上百数表来研究,结果在一个班实践后认为效果并不是很理想,由于数太多,让学生观察3的倍数的这些数时,并从中找出相同的地方,结果,很多同学找了与本节课毫无关系的东西,浪费了很多时间。在评课的时候,我们又讨论是不是找一些数代表百数表,于是我设计了一个表格,让学生用除法计算的方法找到3的倍数的特征,并观察这些数,这些数的个位分别从0到9都有,让学生知道3的倍数的特征跟数的个位没有关系,然后从中又把像45和54,75和57,123和321等特殊的数单独展示出来,让学生观察从中找出规律。结果我又重新上了这节课,效果比上节课要好。

  这节课结束后,我感觉最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练习题方面,也应形式面多样化,如用卡片练习判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得最佳的`效果。

  【扩展阅读】

3的倍数的特征教学后记2

  有时候,我们是需要给学生挖个“陷阱”的,3的倍数的特征教学反思。本节课开始探究时,学生纷纷凭借2、5的倍数特征这一经验,关注个位数字,在“瞎忙活”了一阵后发现,3的倍数的特征是不能仅看个位数字的。这是我给出了“123”和“729”两个数,让学生任意组合,并判断是否是3的倍数。学生在经历了“123÷3”“213÷3”“312÷3”……等活动后作出了大胆的猜想:3的倍数和这个数各个数位上的数字都有关系。紧接着在百数表中圈出3的倍数,圈出后3的倍数排列极其有规律——3的倍数都在几条斜线上。这时引导学生进一步观察:这些数各个数位上的数字有什么特征?学生起初有些茫然,经教师提醒“看和”后,思路瞬间打开,学生小组交流、提出规律、举例验证,很快发现了知识,教学反思《3的倍数的特征教学反思》。

  本节课教学虽说时间有所“浪费”,但我认为是值得的。农村学生思维水*相对发展较慢,尤其是如何引导他们在课堂教学中积累数学活动经验,这是一个漫长的过程。教学中,我们要舍得花费时间,要舍得去绕弯路,要舍得去等待,这样才能还给学生真正的“*等”、“民主”,这才是真正的尊重和爱护。教育的路很长,我希望在这条路上,和孩子们一起走出最好的自己。


《3的倍数的特征》教案10篇(扩展10)

——《3的倍数特征》教学反思3篇

《3的倍数特征》教学反思1

  《3的倍数的特征》的教学是五年级数学上册第三单元“因数与倍数”中一个重要知识点,是学生在学习了2和5的倍数特征之后的新内容。

  3的倍数的特征与2和5的倍数的特征有很大差别,2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我在本节课设计理念上,突出以学生为主体,教师为主导,方法为主线的原则,从现象到本质,从质疑到解疑。当然本节课也存在很多问题,下面我进行做几点反思

  1、瞄准目标,把握关键

  在导入环节,我通过复习旧知识进行“热身”。由于学生已经掌握了2和5倍数的特征,知道只要看一个数的个位就能判断一个数是不是2或5的倍数,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来,尽管是负迁移。实际上,鲜明的冲突让学生发现却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样有利于学生对新知识的掌握,有效的将新知识纳入到原有的`认知结构中去,还有利于培养学生深入探究的意识和能力。

  2、经历过程,授之以渔

  猜想3的倍数特征是基础,在学生得出猜想后,我便引导学生找出百数表中3的倍数去验证,并在验证中推翻了刚才的猜想。验证也是有技巧的,30以内即可发现3的倍数中,个位上可能是10个数字中的任何一个,之前的判断已经站不住脚。之后继续探究,在100以内,基本可以发现规律,但为了严谨,必须跳出百数表,在100以上的数中去验证这个规律。最后,引导学生理解这个结论背后的原理,为什么它的规律和之前的规律不一样?这样一来,学生不仅学会本节课知识,更掌握了科学的探究方法。

  3、追求本真,知其所以然

  本节课的目标定位上,我考虑到学生的已有认知基础,我决定引导学生探索3的倍数的特征背后的道理。这一尝试建立在我对学生学情把握的基础上,因为3的倍数的特征的结论一但得出,运用起来没有难度,后面的练习往往成了“休闲时间”,而进一步提升探索难度,无疑是开发思维的良好契机。我运用数形结合的方法逐步深入,最后还是把话语权留给学生,这样就给予不同学生各自适应的个性化学习方略,真正做到了让每位同学在数学上都得到发展。

《3的倍数特征》教学反思2

  《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。

  一、猜想:让学生回顾旧知,2的倍数和5的倍数有什么特征,学生们发现都只要看一个数个位上的数就行了,于是很顺地设下了陷阱:同学们,那猜猜看3的`倍数有什么特征呢?由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到:“个位上是0,3,6,9的数一定是3的倍数”。

  二、验证::先让学生在百数图中找找看,显然像13、16、19等等的数不是3的倍数,学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢。

  三、探究:在此基础上,让学生在百数图中找出3的倍数的数,如果把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→2115→5118→8124→4227→72

  我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  四、验证:下面各数,哪些数是3的倍数呢?

  2105421612992319876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。这样结论的得出水到渠成。

《3的倍数特征》教学反思3

  【初次实践】

  课始,让学生任意报数,师生比赛谁先判断出这个数是不是3的倍数,正当我沉浸在游戏的情境之中,几个“不识时务者”打乱了课前的预想。“老师,我知道其中的秘密,只要把各个数位上的数加起来,看看是不是3的倍数就行了!”“对!在数学书上就有这句话。”……又有几个学生偷偷地打开了数学书。“怎么办?”谜底都被学生揭开了。面对这一生成,我没有死守教案,而是果断地调整了预设,变“探索”为“验证”,将结论板书在黑板上,让学生理解这句话的意思,然后组织学生将百数表中3的倍数圈出来,验证是不是具有这样的特征,最后进行一系列巩固练习……

  [反思]

  课堂上经常会出现类似上述案例中的“超前行为”,即有些学生提前把要探究的新知识和盘托出。我们的习惯做法就是变“探索”为“验证”,当然有些知识的教学采用这种方式是有效的,然而本课中“验证”的过程真能取代“探究发现”的过程吗?仅仅举几个例子试一试,验证方法单一,思维含量低,学生充其量只能算是执行操作命令的“计算器”,又能获得哪些有益的发展?如果经常进行这样的教学,还容易使学生形成浮躁浅薄,不求甚解,甚至只要结论的不良学习风气。怎么办,置之不理吗?如果这样,不仅没有尊重学生已有的知识经验,而且在已经揭开“谜底”的情况下,再试图引导学生进行猜想、实验、发现,体验遭受挫折后取得成功的那种激动,也只能是一种奢望。那么又该如何激发学生探究的热情,促使学生进行深入探究呢?

  【再次实践】

  (与第一次教学情况基本相同,有些学生能够正确地判断一个数是不是3的倍数,这时一些学生却依然感到困惑,我设法将这一困惑激发出来。)

  师:同学们真能干,这么快就知道了3的倍数的特征,上节课我们学习了2、5的倍数的特征只和什么有关?

  生:只和一个数的个位有关。

  师:与今天学习的知识比较一下,你有什么疑问吗?

  生1:为什么判断一个数是不是3的倍数只看个位不行?

  生2:为什么判断一个数是不是2、5的倍数只看个位,而判断是不是3的倍数要看各位上数的和?

  ……

  师:同学们思考问题确实比较深入,提出了非常有研究价值的问题。那我们先来研究一下2、5的倍数为什么只和它的个位有关。

  (学生尝试探索,教师适时引导学生从简单数开始研究,借助小棒或其他方法进行解释。)

  生1:我在摆小棒时发现,十位上摆几就是几十,它肯定是2、5的倍数,因此只要看个位摆几就可以了。

  生2:其实不用摆小棒也可以,我们组发现每个数都可以拆成一个整十数加个位数,整十数当然都是2、5的倍数,所以这个数的个位是几就决定了它是否是2、5的倍数。

  师:同学们想到用“拆数”的方法来研究,是个好办法。

  生3:是否是3的倍数只看个位就不行了。比如13,虽然个位上是3的倍数,但10却不是3的倍数;12虽然个位不是3的倍数,但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的数和个位上的数合起来是不是3的倍数就行了。

  生4:我也是这样想的,我还发现十位上余下的数正好和十位上的数字一样。

  生5:(面带困惑)起初,我也是这样想的,可是在试三十几、四十几时就不行了。余下的数和十位上的数不一样了,比如40除以3只余1,余下的数就和十位数字不同。

  生(部分):对。

  生4:其实40不要拆成39和1,你拆成36和4,余下的数不就和十位数字相同了吗?

  生6:也就是说整十数都可以拆成十位上的数字和一个3的倍数的数。这样只要看十位上的数和个位上的和是不是3的倍数就可以了。

  师:同学们确实很厉害!那三位数、四位数是不是也有这样的规律呢?

  学生用“拆数”的方法继续研究三、四位数,发现和两位数一样,只不过千位、百位上余下的数要依次加到下一位上进行研究。3的倍数的特征在学生头脑中越来越清晰。

  师:同学们通过自己的探索,你们不仅发现了3的倍数的特征,还弄清了为什么有这样的特征。现在你还有哪些新的探索想法呢?

  生1:我想知道4的倍数有什么特征?

  生2:我知道,应该只要看末两位就行了,因为整百、整千数一定都是4的倍数。

  师:你能把学到的方法及时应用,非常棒!

  生3:7或9的倍数有什么特征呢?

  ……

  师:同学们又提出了一些新的、非常有价值的问题,课后可以继续进行探索。

  [反思]

  1. 找准知识间的冲突,激发探究的愿望。学生刚刚学习了2、5的倍数的特征,知道只要看一个数的个位,因此在学习3的倍数的特征时,自然会把“看个位”这一方法迁移过来。而实际上,3的倍数的特征,却要把各个位上的数加起来研究。于是新旧知识之间的矛盾冲突使学生产生了困惑,“为什么2或5的倍数只看个位?”“为什么3的倍数要把各个位上的数加起来研究?”……学生急于想了解这些为什么,便会自觉地进入到自主探究的状态之中。知识不是孤立的,新旧知识有时会存在矛盾冲突,教师如能找准知识间的冲突并巧妙激发出来,就能激起学生探究的愿望。这样不仅有利于学生对新知的掌握,有效地将新知纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。

  2. 激活学习中的困惑,让探究走向深入。创造和发现往往是由惊讶和困惑开始。对比两次教学,第一次教学由于忽视了学习中的困惑,学生对于3的倍数的特征理解并不透彻,探索的体验也并不深刻。第二次教学留给学生质疑的时空,巧设冲突,让学生进行新旧知识的对比,将困惑激发出来,通过学生间相互启发、相互质疑,对问题的思考渐渐完整而清晰。学生不但经历由困惑到明了的过程,而且思维不断走向深入,获得了更有价值的发现,探究能力也得到切实提高。学生在学习中难免会产生困惑,这种困惑有时是学生希望理解更全面、更深刻的表现。面对这些有价值的思考,我们要有敏锐的洞察力,采取恰当的方法将其激活,促使探究活动走向深入,让学生获得更大的发展。当然,学生在学习中可能产生怎样的困惑,面对这一困惑又该如何恰当引导,尚需要教师课前精心预设。

  3. 沟通知识间的联系,让学生不断探究。显然,2、5的倍数的特征与3的倍数的特征是相互联系的,其研究方法是相通的(都可以通过“拆数”进行观察),特征的本质也是相同的。这种研究方法和特征本质的及时沟通,激发了学生继续研究4、7、9……的倍数的特征的好奇心,促使学生不断探究,将学习由课内延伸到课外,并在探究过程中建构起对数的倍数特征的整体认识,感悟数学其实就是以一驭万,以简驭繁。课堂不是句号,学生的发展始终是教学的落脚点。我们的教学绝不能仅仅局限于学生对于一堂课知识的掌握,而应着眼于学生对于解决问题方法的感悟,获得可持续发展的动力。

推荐访问:倍数 教案 特征 《3倍数特征》教案【10篇】 《3的倍数的特征》教案1 3的倍数的特征的教案

Top