卓迈文档网
当前位置 首页 >专题范文 > 公文范文 >

2023年度《*行四边形面积》评课稿3篇(完整文档)

发布时间:2023-03-30 14:05:04 来源:网友投稿

《*行四边形的面积》评课稿1  听了XX老师执教的五年级数学的《*行四边形的面积》,使我受益匪浅,让我深切的感受到只有让学生主动学习,积极参与课堂活动,才能发展学生思维,激活学生的智慧点,提高学生的下面是小编为大家整理的2023年度《*行四边形面积》评课稿3篇(完整文档),供大家参考。

2023年度《*行四边形面积》评课稿3篇(完整文档)

《*行四边形的面积》评课稿1

  听了XX老师执教的五年级数学的《*行四边形的面积》,使我受益匪浅,让我深切的感受到只有让学生主动学习,积极参与课堂活动,才能发展学生思维,激活学生的智慧点,提高学生的创新和分析的能力。具体概括为以下几点:

  1、导入部分通过交流问题生成单,让学生提炼出最想提最有价值的问题,找准了学生的问题点,并激发了学生的学习积极性,给学生充分的营造了学习氛围,使他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得了广泛的数学活动经验。

  2、在小组活动时,XX老师多次鼓励学生自己去发现,自己去思考,自己找到最好的解决办法,并参与到学生的讨论交流中,激活了学生的思维,引发了学生的转化思想。学生积极动手、动脑,从不同角度思考,发现了*行四边形可以转化成长方形进行计算,这一环节使课堂充满了实效性,让学生经历了知识的形成过程。

  3、课末检测的设计有层次、有梯度。设计了A类和B类,有基础性练习,也有拓展思维练习,使不同学生有不同发展。

《*行四边形的面积》评课稿2

  听了孙老师和白老师执教的《*行四边形的面积》一课,两节课都层次清晰,尊重学生在学习过程中的主体地位,通过学生的数、剪、拼、摆等系列操作活动,着重培养了学生主动探究新知的意识与运用知识解决实际问题的能力。

  一、教学思路清晰,目标明确,重难点突出。孙老师一开始以比较长方形和*行四边形两个花坛的大小引出本课,激发学生的探究欲望,思考解决的方法。白老师是先回忆了以前学过的*面图形及其面积,并在一开始就渗透了*行四边形相对应的高和底。

  二、大胆放手让学生思考,重视动手操作引导学生探究,渗透“转化”思想

  整个教学过程孙老师先让学生猜测*行四边形的面积,然后通过拉动长方形使之变成*行四边形,发现周长没变面积变小了,从而否定了面积等于邻边相乘。两位老师都给足时间让学生动手操作,对于面积公式的推导都是建立在学生的数、剪、拼、摆的操作活动之上的,教师只是引导,而不是包办,让学生在独立思考和交流的基础上进行操作,学生也通过活动,发展学生的空间观念,培养动手操作能力。白老师在学生用割补法之前在上出示了具体要解决的问题,让学生带着问题操作,要求明确,便于学生操作。

  三、练习设计各有千秋,形式多样,层层递进,并突出*行四边形的面积用底乘高必须是相对应的才可以。孙老师的练习贴近生活,体现了数学与生活的紧密联系,说明生活中数学的重要性。白老师设计的自我检测很好,简单梳理了*行四边形面积的推导过程,使学生对于这个转化的思路更加条理。

  建议:

  孙老师的练习中学生的独立练习少,应该让学生亲自体验解决问题的步骤,这样印象会更深刻。白老师在独立练习时,如果叫两名学生板演,在讲解时会更直观,便于学生观察记忆,也便于发现问题。


《*行四边形的面积》评课稿3篇扩展阅读


《*行四边形的面积》评课稿3篇(扩展1)

——*行四边形的面积评课稿3篇

*行四边形的面积评课稿1

  X老师执教的《*行四边行的面积》这节课中,着重让学生通过剪、拼、摆等动手操作的活动来主动探究*行四边形的面积计算公式,在自主得出*行四边形的面积计算公式的同时,又培养了学生积极参与、团结合作、主动探索的精神。我觉得这是一堂促进学生全面发展的课堂,体现新课标理念的课堂。我认为本节课的启示有以下几点:

  一、注重数学方法和思想的渗透。

  在数学课堂渗透科学的数学方法和思想是一项很重要的任务,关系到学生思维的严密性和逻辑性等良好思维品质的培养。本节课李老师让学生利用一不规则图形通过割补这一数学方法转化为规则图形长方形,从中再让学生猜想*行四边形的面积计算方法到验证并得出结论,让学生尝试了从猜想到验证这样一种科学的探究规律的方法,学生通过这样的.摸索探究,科学方法深入学生的思维。再如老师还很重视*行四边形面积计算探究中的转化思想和练习中底和高对应关系寻找,数学中很重要的几种思想学生得到了很好培养,为今后学生逻辑思维和解决问题能力发展打下良好的基础。

  二、教学思路清晰,重难点突出。

  X老师根据教学内容,因材施教地制定了教学思路。这节课以“创境猜想——指导探究——发现规律——实践应用”为线索,整个教学思路清晰。

  这节课X老师突出培养学生动手操作、自主探究的训练,通过剪、拼、摆等活动来加深对面积计算的理解,突出重难点的内容,整个教学做到详略得当,重、难点把握准确。这样的设计,符合学生年龄特点和认知规律,体现了以学生为主体的学习过程,培养了学生的学习能力。

  三、重视操作探究,发挥主体作用。

  由新课开始,老师用课件演示一个不规则的图形来转化成一个长方形来计算它的面积,让学生猜测*行四边行面积可能与它的什么有关?然后,让同桌拿一个*行四边行纸片剪拼,看能不能把它转化成学过的图形,从而证实学生的猜想。最后,老师又让同桌拿另一个*行四边形与并拼成的长方形比较,并组织学生讨论:*行四边行和转化后的长方形有的关系,在计算长方形的面积基础上怎样去计算*行四边行的面积?整个操作过程层次分明,通过剪、拼,让学生动手、动脑、动口。人人参与学习过程,不是为操作而操作,而是把操作、理解概念、表述数理有机地结合起来。让学生看自己剪拼的图来说数理,降低了数理表述的难度。通过操作,让学生既学得高兴又充分理解知识,形象直观地推导了*行四边行的公式概念,培养学生获取知识的能力、观察能力和操作能力。

*行四边形的面积评课稿2

  《*行四边形的面积》是人教版九年义务教育第九册第五单元多边形面积的计算第一小节的内容。几何知识的初步认识贯穿在整个小学数学教学中,是按由易到难的顺序呈现的。*行四边形面积的计算是在学生已经掌握并能灵活运用长方行面积计算公式,理解*行四边行特征的基础上进行教学的。而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等*面图形的面积奠定良好的基础。听了邱灵芳老师执教的《*行四边形的面积》这堂课,感到值得学习和借鉴的地方很多。她的课堂,给我留下最深印象的就是教师的主导作用恰如其分,学生的自主探究氛围浓厚,多维能力得以发展。纵观整节课有以下几个亮点:

  一、动手实践,多维探究。

  老师在教学过程中十分重视孩子的自主动手操作探究,发挥学生的主体作用。例如,教学时,邱老师出示一个与长方形面积相等的*行四边形,先让孩子们认真观察,用数方格的方法比较它们的面积大小,让孩子明白“数格子的方法不大好用”,从而产生探究的欲望:能否将*行四边形转化成与它面积相等的图形来计算它的面积?接着孩子们积极讨论后再动手操作:观察手中的*行四边形的纸片,剪一剪、拼一拼,在动手实践、操作探究中自主发现*行四边形的面积计算公式。整个操作过程层次分明,通过剪、拼,让学生动手、动脑、动口,使孩子们多维参于探究活动。在这个活动中,孩子们学得既高兴又充分地理解知识,懂得应用割补法直观、形象地推导出*行四边行的面积计算公式,从而培养学生获取知识的能力、观察能力和操作能力。

  二、重视思想,善于渗透。

  在数学课堂渗透科学的数学方法和思想是一项很重要的任务,关系到学生思维的严密性和逻辑性等良好思维品质的培养。邱老师执教的这堂课中“转化”的数学思想方法得到了很好的渗透。*行四边形面积的推导要渗透的就是这种转化的思想,这种思想将直接影响之后学习的三角形、梯形等*面图形面积的推导。邱老师在全课始终都强调了这种思想,甚至在全课总结时都不忘转化思想的强调。另外练习中的底和高互相对应的思想方法和等底等高*行四边形面积相等的思想也得到了较好地渗透。

  三、分层运用,逐步内化。

  对于新知需要及时组织学生巩固运用,才能得到理解内化效果。邱老师能本着“重基础、验能力、拓思维”的原则,设计如下几道练习题:

  1、基础练习:判断题,巩固*行四边形面积公式推导过程。

  2、提升练习:出示例1及生活中的数学题,熟练*行四边形面积计算公式。

  3、发散练习:下面*行四边形的面积相等吗?

  为什么?此题需要学生综合运用知识,进行逻辑推理,使学生明白等地等高*行四边形的面积相等。整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

  总之,这节课邱老师能注意激发学生的学习兴趣,注重学生主动参与,合作交流,动手操作,让孩子们在活动中学习,在学习中思考,在思考中成长。

*行四边形的面积评课稿3

  X老师执教的《*行四边行的面积》这节课中,着重让学生通过剪、拼、摆等动手操作的活动来主动探究*行四边形的面积计算公式,在自主得出*行四边形的面积计算公式的同时,又培养了学生积极参与、团结合作、主动探索的精神。我觉得这是一堂促进学生全面发展的课堂,体现新课标理念的课堂。我认为本节课的启示有以下几点:

  一、注重数学方法和思想的渗透。

  在数学课堂渗透科学的数学方法和思想是一项很重要的任务,关系到学生思维的严密性和逻辑性等良好思维品质的培养。本节课李老师让学生利用一不规则图形通过割补这一数学方法转化为规则图形长方形,从中再让学生猜想*行四边形的面积计算方法到验证并得出结论,让学生尝试了从猜想到验证这样一种科学的探究规律的方法,学生通过这样的摸索探究,科学方法深入学生的思维。再如老师还很重视*行四边形面积计算探究中的转化思想和练习中底和高对应关系寻找,数学中很重要的几种思想学生得到了很好培养,为今后学生逻辑思维和解决问题能力发展打下良好的基础。

  二、教学思路清晰,重难点突出。

  X老师根据教学内容,因材施教地制定了教学思路。这节课以“创境猜想——指导探究——发现规律——实践应用”为线索,整个教学思路清晰。

  这节课X老师突出培养学生动手操作、自主探究的训练,通过剪、拼、摆等活动来加深对面积计算的理解,突出重难点的内容,整个教学做到详略得当,重、难点把握准确。这样的设计,符合学生年龄特点和认知规律,体现了以学生为主体的学习过程,培养了学生的学习能力。

  三、重视操作探究,发挥主体作用。

  由新课开始,老师用课件演示一个不规则的图形来转化成一个长方形来计算它的面积,让学生猜测*行四边行面积可能与它的什么有关?然后,让同桌拿一个*行四边行纸片剪拼,看能不能把它转化成学过的图形,从而证实学生的猜想。最后,老师又让同桌拿另一个*行四边形与并拼成的长方形比较,并组织学生讨论:*行四边行和转化后的长方形有的关系,在计算长方形的面积基础上怎样去计算*行四边行的面积?整个操作过程层次分明,通过剪、拼,让学生动手、动脑、动口。人人参与学习过程,不是为操作而操作,而是把操作、理解概念、表述数理有机地结合起来。让学生看自己剪拼的图来说数理,降低了数理表述的难度。通过操作,让学生既学得高兴又充分理解知识,形象直观地推导了*行四边行的公式概念,培养学生获取知识的能力、观察能力和操作能力。


《*行四边形的面积》评课稿3篇(扩展2)

——*行四边形评课稿 (菁选3篇)

*行四边形评课稿1

  本节课杨老师根据数学课程标准的基本理念,精心设计学生的数学活动,通过折一折、量一量、围一围、说一说、画一画等一系列的活动,让学生感知*行四边形的特征。总的来说主要有以下特点:

  一、设计活动,激发兴趣。

  在本节课的教学中,杨提老师供给学生许多不同的学具,让学生自己选择喜欢的学具制作*行四边形,让每个学生都有观察、操作、分析、思考的机会,提供给学生一个广泛的、自由的活动空间。通过在钉子板上围一围,方格纸上画一画,小棒摆一摆探索发现“对边相等”这一特征。当学生通过动手动脑,在探索中初步发现*行四边形的特征。通过说一说,让学生不仅深刻理解*行四边形的特征,使感性认识上升为理性认识,而且进一步激发学生探索、研究的欲望,通过大胆尝试、探索,感受数学的乐趣,激起学习的热情。

  2.独立思考,探索发现

  本节课的教学,杨老师力图通过适当的引导,启发学生自己去主动探索和发现知识,在此过程中体验成功的喜悦,增强学习知识的自信心。教学为着这个目标去努力,也实现了这个目标。在整个教学过程中,*行四边形的特征是学生自己动手、动脑,探索和发现获得的,而不是杨老师教给他们的。杨老师先让学生“做一做——看一看——说一说”来感知*行四边形的特征,为学生创设了继续探索的空间。杨老师鼓励每一个孩子根据自己的情趣、愿望和能力,用自己的方式去操作、去探究、去学习。仔细地观察,自由地表述,培养孩子成为学习的主人。

  但在教学中也出现了一些问题,如小组间的活动太少,有少数孩子参与度不高,或者比较被动,在学生的交流汇报中,有少数孩子一直没有举手发言。这些问题在今后的教学中杨老师将继续探索,寻求解决方案。

*行四边形评课稿2

  教学目标:

  1、使学生通过探索,理解和掌握*行四边形的面积计算公式,会计算*行四边形的面积。

  2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  导入:

  本节课通过小羊换菜地的故事导入,引出本节课学习的内容是*行四边形面积。(让学生感悟到数学源于生活用于生活,体现了数学的应用价值,从而激发了学生的探究欲望。)先根据数方格的"方法,来确定两块菜地面积相等,交换公*。并且在数格子的同时,一起把他们的高、底、邻边、长、宽的数据确定,通过长方形面积与长和宽有关系,(计算长方形的面积,为尝试计算*行四边形的面积提供了思维依据)。请同学们大胆猜测*行四边形的的面积和什么有关。(学生出现了不同的答案,这一认知冲突激发了学生进一步探究的欲望,为下一步的转化作了铺垫)然后再动手验证

  验证:

  动手验证的过程,是小组合作学习的过程,第一步转化图形是要孩子们独立思考动手操作的,然后在小组内展示。第二步是在第一部的基础上,小组之间合作完成讨论,从中发现转化前后图形的面积,各边各有什么变化,。最后就是汇报环节。(“独立思考—合作交流—汇报展示”,突出小组合作学习的真实与实效,充分展现学生自主探究的过程,让学生真正掌握了*行四边形的面积公式的推导方法。)

  总结:

  师:(结合教具演示进一步说明)(教师在学生展示的不同方法的基础上,进一步引导学生明确*行四边形转化的特点:无论哪种方法,只要是沿着*行四边形的高剪开,都能转化成长方形。方法不同,结果相同,从而让学生明白利用长方形面积公式推导*行四边形面积公式的科学性。)

  师:做课本例题(例题让学生自主解决,既是对*行四边形的面积公式的初步应用,也是对前面尝试计算停车场面积结果的验证,从而让学生经历了一个解决问题的完整过程。)

  练习:

  师在设计练习时,(巩固应用环节让学生从基本应用、综合应用、思维拓展三个层次进行了练习,基本应用的题目旨在应用公式的同时,一方面培养了学生的动手能力,另一方面培养了学生根据问题寻找条件的分析问题能力,加深了对*行四边形的面积计算公式的理解。综合应用题目培养了学生运用所学知识解决实际生产问题的能力。思维拓展让学生理解了*行四边形面积的大小随着高的变化而变化,进一步加深了对*行四边形的面积的计算公式的理解,发展了学生空间观念。)

*行四边形评课稿3

  翁老师执教的《*行四边形的性质复习》这节课中,我觉得这是一堂充满生命活动力的课堂,也是促进学生全面发展的课堂,体现新课标理念的课堂。我认为本节课的启示有以下几点:

  一、教学思路清晰,重难点突出。

  翁老师根据教学内容,因材施教地制定了教学思路。这节课翁老师突出培养学生动手操作、主动探究的训练,通过画图活动来加深对*行四边形的性质的理解,整个教学做到详略得当,重、难点把握准确。这样的设计,符合学生年龄特点和认知规律,体现了以学生为主体的学习过程,培养了学生的学习能力。

  二、重视操作探究,发挥主体作用。

  翁老师设计了画图操作活动,让人人参与学习过程,不是为操作而操作,而是把操作、理解概念有机地结合起来。通过操作,让学生既学得高兴又充分理解知识,形象直观地复习了*行四边形的性质。

  三、教师的主导作用:

  这节课也让我们感受到翁老师鲜明的教学风格,每一道题呈现出来之后都让学生经历观察、思考、交流、探讨的过程,最后教师点评,较好的发挥了教师的主导作用。具体体现在以下三个方面:

  (1)点拨到位:例如第一题在学生分析的过程中,翁老师耐心倾听,对学生找出的结论,没有逐个点评。在学生都发表完意见之后,老师再进行小结。

  ⑵引导的恰如其分:通过课件的演示让学生观察边角的关系,他首先引导学生在演示的过程中找出对应边角,为学生顺利解决问题指明了方向。

  ⑶评价恰当:针对学生年龄特点、及内初班学生情况。翁老师及时简单中肯的评价,给予了学生莫大的鼓励。

  四、学生良好的学习习惯养成:

  这个班的学生基础较好,他们活泼可爱、积极向上。由于翁老师的问题设计非常合理,极大地调动了学生学习的积极性。

  ⑴氛围:学生发言积极,思维活跃。课堂上探究学习的氛围非常浓厚。

  ⑵师生关系:翁老师的性格开朗、豁达的个性深深感染着学生,师生关系融洽,非常民主、*等、和谐。

  ⑶训练有素:学生敢于表达自己的见解,可以看出学生*时训练非常有素。

  五、教学效果好:

  从整体上看,本节课较好的完成了教学目标,教学设计体现了数学教学的新理念。教学实施的手段领先,能充分利用课件演示图形的变化,活跃学生的思维,具有很强的直观性,切实达到了教师、学生、媒体的整合。学生的思维得到有效地训练,通过问题的解决,进一步培养了数学学习的能力。是值得我们学习的一节好课。


《*行四边形的面积》评课稿3篇(扩展3)

——《*行四边形的面积》 说课稿

《*行四边形的面积》 说课稿1

  一、教学目标

  (一)知识与技能

  让学生经历探索*行四边形面积计算公式的过程,掌握*行四边形的面积计算方法,能解决相应的实际问题。

  (二)过程与方法

  通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

  (三)情感态度和价值观

  通过活动,培养学生的探索精神,感受数学与生活的密切联系。

  二、教学重难点

  教学重点:探索并掌握*行四边形面积计算公式。

  教学难点:理解*行四边形面积计算公式的推导过程,体会转化的思想。

  三、教学准备

  *行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。

  四、教学过程

  (一)创设情境,激趣导入

  1.创设情境。

  (1)呈现教材第86页单元主题图。(PPT课件演示)

  教师:瞧!校园门口,你在哪些物体上看到了我们学过的*面图形?

  (2)学生汇报交流。

  (3)回顾:我们生活在一个图形的世界里,这些图形有大有小,*面图形的大小就是它们的面积。我们已经研究过哪些*面图形的面积?怎样计算?

  预设学生回答:长方形的面积=长宽,正方形的面积=边长边长。

  (4)引入新课:这幅图中除了有长方形和正方形,还有*行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入多边形的面积的学习。(板书单元课题:多边形的面积)

  2.揭示本节课题。

  复习引入。(PPT课件演示)

  请大家看校园门口的这两个花坛,哪一个大呢?要比较花坛的大小,其实就是比较它们的什么?你会算哪个花坛的面积?怎样计算?那*行四边形的面积怎样计算呢?今天这节课,我们就一起来研究*行四边形的面积。(板书课题:*行四边形的面积)

  【设计意图】通过简单的情境创设,让学生从实际生活(教材主题图)中发现图形,巩固和加深对已学图形特征的认识,引入多边形及面积的概念,从而揭示单元课题;从比较主题图中的两个花坛的情境引入*行四边形面积计算的教学,以小见大,在渗透思考方法中揭示本节课的课题,让学生快速进入学习情境,同时又为后面探究面积公式指引了转化的方向。

  (二)主动探索,推导公式

  1.用面积单位测量*行四边形的面积。

  (1)提问:要知道这个*行四边形的面积,怎么办?(PPT课件演示)

  引导学生回顾用面积单位测量图形面积的方法。

  (2)操作:现在把它们放在方格纸上,一个方格代表1m2,不满一格的都按半格计算。*行四边形的面积是多少,你能数出来吗?长方形的面积呢?(教师适时用PPT课件演示)

  (3)学生先独立数*行四边形的面积,再互相交流。

  预设*行四边形的面积:

  方法一:从左往右数,每行6个,有4行,*行四边形的面积是24*方米;

  方法二:先数整格有20个,再数半格有8个,相当于4个整格,合起来一共是24*方米。

  长方形的面积:长6米,宽4米,面积是64=24(*方米)。

  (4)教师小结:虽然大家数的方法不一样,但同学们都是在用面积单位进行测量。

  (5)填写表格。

  ①师生共同完成表格:*行四边形的面积是多少?它的底和高分别是多少?长方形呢?(PPT课件演示)

  ②引导学生观察:观察这个表格,你发现了什么?

  ③交流回报,小结:有的同学发现了,这个*行四边形的底与长方形的长相等,*行四边形的高和长方形的宽相等,*行四边形的面积与长方形的面积相等。还有的同学发现,这个*行四边形底乘以高正好等于它的面积,由此猜测*行四边形的面积=底高。

  【设计意图】面积计算最基本的方法是单位面积测量法,即用统一的面积单位进行测量,这个方法虽然学生在学习长方形和正方形的面积计算时已经使用过,但因为*行四边形中出现了半格,所以本环节教师可引导学生进行测量;对于长方形的面积,学生已会计算,可直接通过计算得出结果;再通过对比它们的底(长)、高(宽)和面积的数据,沟通这两个图形之间的联系,为后面进一步探寻*行四边形面积的计算方法做准备。

  2.操作思考,推导公式。

  (1)教师:看来,数方格的确能让我们知道*行四边形的面积。但是,如果有很大一块草坪,数方格方便吗?显然是不方便的。如果不数方格,怎样计算*行四边形的面积呢?

  这个*行四边形的面积恰好等于底高,那是不是所有的*行四边形的面积都等于底高呢?看来,还需进一步研究哦!(PPT课件演示)

  (2)引导学生确定探究方向:我们已经学过某些图形的面积计算方法,能否将*行四边形转化成它们来计算面积呢?请大家借助手中的*行四边形卡纸,先独立思考、动手操作,找到答案后在小组内交流。

  (3)操作转化,推导公式。

  ①操作转化。

  a.学生独立思考,动手剪拼*行四边形,将它转化成长方形后组内交流。

  b.学生展示汇报。(PPT课件演示)

  c.大家发现它们有什么相同之处?为什么要沿着*行四边形的高来剪开?有多少种不同的剪法?为什么?

  ②观察思考。

  a.观察:原来的*行四边形和转化后的长方形,你发现它们之间有哪些等量关系?(PPT课件演示)

  b.思考:*行四边形的底和长方形的( )相等,*行四边形的( )和长方形的( )相等,这两个图形的面积( )。(PPT课件演示)

  c.学生汇报。(教师板书)

  ③概括公式。

  你能根据长方形的面积计算公式推导出*行四边形的`面积计算公式吗?会用字母表示吗?(PPT课件演示,板书公式)

  (4)回顾与小结。

  ①我们已经知道*行四边形的面积等于底乘高,回顾一下,它是怎样推导出来的?

  ②教师小结:首先把一个*行四边形沿高剪开后*移拼成一个长方形,再观察原来的*行四边形和拼接后得到的长方形,发现等量关系:*行四边形的底和长方形的长相等,*行四边形的高和长方形的宽相等,两个图形的面积也相等。因为长方形的面积等于长乘宽,所以*行四边形的面积等于底乘高。像这样把未知的*行四边形的面积转化成已学的长方形的面积来研究的方法,在我们数学学习中经常用到。如果同学们在后面的学习中碰到类似的问题,也可以用它来解决问题。

  【设计意图】在尝试单位面积测量法之后,本环节首先让学生感受到数方格的局限性,启发他们将*行四边形转化为已学的图形来计算面积,激发他们探究公式的欲望;在推导公式的过程中,设计了三个层次的活动:第一个层次是操作转化,让学生达成共识沿高剪开后通过*移将*行四边形转化成长方形;第二个层次是观察思考,让学生通过观察对比后发现转化前后图形之间的等量关系,沟通了两个图形之间的内在联系,为有效推导面积公式提供了有力的支撑;第三个层次是概括公式,水到渠成。这样设计层次清楚,目标明确。最后的小结环节,在引导学生回顾推导公式的过程中培养他们回顾反思的能力,同时又渗透转化思想。

  (三)巩固运用,解决问题

  1.教学教材第88页例1。

  (1)出示例题,呈现问题情境。(PPT课件演示)

  (2)理解题意,叙述题目内容。

  ①用自己的话说一说题目的意思是什么?

  ②学生根据图文叙述:知道*行四边形花坛的底是6米,高是4米,求花坛的面积是多少*方米。

  (3)收集信息,明确问题。

  ①提问:从题目中你获得了哪些数学信息?要求什么?

  ②思考:要求花坛的面积,其实就是求什么?

  ③归纳:要求花坛的面积,其实就是求底是6米、高是4米的*行四边形的面积。

  (4)学生独立解答。

  (5)学生汇报,教师板书,规范书写。

  2.课堂练习。

  完成教材第89页练习十九第1题。

  (1)学生独立完成。

  (2)同桌互相说说自己是怎样做的。

  (3)全班集体交流:这个问题你是怎样算的?

  【设计意图】例1是直接从情境中选取的实际问题,既可以指导学生如何应用计算公式解决实际问题,又可以具体验证计算公式的正确性(与数方格所得的面积相等);同时还应注意对书写格式的指导,即先用字母表示计算公式,再将数据代入公式求值。

  (四)变式练习,内化提高

  1.基本练习。

  完成教材第89页练习十九第2题。(PPT课件演示)

  (1)学生独立完成。

  (2)同桌互相说一说自己是怎样算的。

  (3)全班集体交流第3题:这个图形的面积你是怎样计算的?(注意选择*行四边形中对应的底和高来计算面积。)

  参考答案:12cm2;18.72cm2;4.8cm2。

  2.提高练习。

  完成教材第89页练习十九第4题。(PPT课件演示)

  (1)理解题意:怎样计算出这两个*行四边形的面积?需要知道什么?(先测量出*行四边形中对应的底和高,再利用公式计算。)

  (2)学生独立完成。

  (3)全班集体交流:两个*行四边形的底和高分别是多少?怎样计算面积?

  3.拓展延伸。

  等底等高的*行四边形的面积一定相等吗?面积相等的*行四边形一定等底等高吗?(PPT课件演示)

  【设计意图】通过基本练习的计算帮助学生进一步理解和掌握公式,提高练习则让学生在计算与解决实际问题的过程中不断加深对公式的理解与运用,最后的拓展延伸旨在让学生在辨析中发散思维。

  (五)全课总结,畅谈收获

  1.今天这节课学习了什么?怎样学的?

  2.今天我们主要推导出了*行四边形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导公式时,我们首先选择的是计算面积的基本方法,就是单位面积测量法,通过数方格知道了*行四边形的面积;再观察表格中的数据,猜测*行四边形的面积等于底乘高;为了验证这一猜想是否正确,又通过剪拼的操作,将未知的*行四边形转化成已知的长方形来研究,最后通过观察对比发现转化前后的*行四边形与长方形之间的等量关系,从而推导出了*行四边形的面积计算公式等于底乘高,从而也验证了猜想的正确性。在这个过程中,大家经历了测量观察猜测转化验证的过程,最后我们还利用公式解决了生活中的实际问题。

  (六)作业练习

  1.课堂作业:练习十九第5题。

  2.课外作业:练习十九第3题。


《*行四边形的面积》评课稿3篇(扩展4)

——《*行四边形的面积》教学反思10篇

《*行四边形的面积》教学反思1

  《*行四边形的面积》一课的教学,我着重培养学生通过剪、拼、摆等动手操作的活动来让他们主动探究*行四边形的面积计算公式,掌握*行四边形面积计算公式并能解决实际问题,同时又培养了学生积极参与、团结合作、主动探索的精神。课结束后我进行反思了,本节课是能促进学生全面发展的课堂,体现新课标理念的课堂,从中也总结了一些成功的经验和失败的教训,具体概括为以下几点:

  一、 值得肯定的地方

  1、 注重数学专业思想方法的渗透。

  我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。在这节课中,先让学生回忆*行四边形与长方形的联系,想一想长方形的面积是怎样求的?让学生想一想怎么求*行四边形的面积,学生一下子就能看出可以把*行四边形转化成长方形求出它的面积,渗透了转化的思想,为后面的学习奠定了基础。

  2、注重学生数学思维的发展

  数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在这节课中,我设计了猜一猜、剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原*行四边形的面积有什么关系?长方形的长和宽与*行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长乘宽,所以*行四边形的面积=底乘高。学生掌握了*行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  3、注重了师生互动、生生互动

  现在我们都在提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。例如:验证完猜想后,师问:两种猜想,两个结果,到底哪一个才是正确的,哪一个才是我们要的间接测量的先进方法呢?还有当学生展示完自己的方法后,教师引导:你认为他的方法怎么样?好在哪儿?你还有什么问题?通过教师设计的这些问题,不断地把课堂引上了师生互动,生生互动的高潮。

  4、练习设计层层递进

  本环节,我出示了不同层次的练习,如:知道了*行四边形的两个高一个底怎么样求它的面积?出示几个看起来不相等的*行四边形,其实面积是相等的,让学生明白等底等高的*行四边形面积相等。这样从“基本题—变式题—发展题”,层层递进,让学困生有奔头,中间生有提高,优秀生有发展,让我们的数学课堂收获遍地开花的效果,最终实现课标要求的“让不同的孩子得到不同的发展”。

  二、教学中的不足:

  1、教师灵活性不强,对个别细节处理的不够,不能有效的抓住学生出现的问题。

  2、小组合作的能力差,缺乏对学生小组交流能力的培养,也缺乏师生间的`互动交流。

《*行四边形的面积》教学反思2

  新课标指出有效的数学活动不能单纯地依靠模仿与记忆,教师要引导学生经过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。在《*行四边形的面积》一课的教学中,我经过让学生动手实践,自主探究,让学生经历了知识的构成过程。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

  一、注重数学专业思想方法的渗透。

  我们在教学中一贯强调,授人以鱼,不如授人以渔,在数学教学中,就是要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学本事。在这节课中,先让学生回忆*行四边形与长方形的联系,想一想长方形的面积是怎样求的?引出能够用数方格的方法来求*行四边形的面积。把这两个图形按每个格1*方米的方法来数,数的过程中提示学生:能够把不满一个格的按半个来数。学生数好以后,说一说数的结果。再让学生说说你是怎样数的?你发现了什么?有利于有本事的学生向转化的方法靠拢。

  二、注重学生数学思维的发展

  数学教学的核心是促进学生思维的发展。教学中,教师要想方设法地经过学生数学知识学习,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一齐来。课堂教学中充分有效地进行思维训练,是数学教学的核心。在这节课中,设计了数一数、剪一剪、移一移、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原*行四边形的面积有什么关系?长方形的长和宽与*行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长х宽,所以*行四边形的面积=底х高。学生掌握了*行四边形面积公式的推导方法,也为今后求证三角形、梯形等面积公式和其他类似的问题供给了思维模式。这个推导过程也促进了学生猜测、验证、抽象概括等思维本事的发展。

  三、分层运用新知,逐步理解内化

  对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着重基础、验本事、拓思维的原则,设计了基础练习(算出下头每个*行四边形的面积);提升练习(量出*行四边形的底和高的长度,并分别算出它们的面积);

  发散练习(下图两个*行四边形的面积相等吗?为什么?在这条*行线之间,还能够画出几种形状不一样而面积相等的*行四边形)。整个习题设计部分,题量虽不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生应对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识。

  四、需要改善的地方

  本节课的不足之处有:在进行把*行四边形转化为长方形时,书上虽只给出了两种方法,可是实际上有很多不一样的剪法,而我也只强调了两种,对于一个学生出现的比较特殊的剪法粗略带过。并且这个环节过后,忘记强调一下,要沿着*行四边形的高剪下,才能*移拼成一个长方形。让学生说的部分还是显得很仓促,自我急于把正确答案给出,这是迫切需要改正的。

  教学是一门有着缺憾的艺术。做为教师,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改善,我们的课堂就会更加精彩。

《*行四边形的面积》教学反思3

  《*行四边形面积的计算》这一资料是在学生学习了长方形、正方形面积计算以及*行四边形的特征,并会画出*行四边形的底和对应的高的基础上进行教学的,是学习三角形、梯形面积计算的基础。现将本节课的教学反思如下:

  1、重视操作体验,发展学生空间观念

  《数学课程标准》指出有效的数学活动不能单纯地依靠模仿与记忆,教师要引导学生经过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。

  教学中,我关注学生已有的知识经验,充分放手,先让学生大胆猜想,进取地为自我的猜想寻找验证的方法,这样学生主动地参与到学习中。之后我引导学生利用手中的学具,让学生动手实践,学生在实践过程中想到了数方格和剪拼的方法,自主探究出*行四边形沿着高剪下来能转化为长方形的方法。小组交流、团体汇报找到*行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到*行四边形面积计算公式是底×高,再利用讨论交流等形式要求学生把自我操作转化推导的过程叙述出来,以发展学生思维和表达本事。这样教学对于培养学生的空间观念,发展解决生活中实际问题的本事都有重要作用。

  2、注重思想方法渗透,引导探究

  转化是数学学习和研究的一种重要思想方法。学生虽然想到了把*行四边形变成长方形,但并不明白这就是转化,我对学生的这一方法进行了提升。在具体操作过程中,我努力让学生经过猜想验证结论的过程,帮忙学生掌握探索问题的一般方法,为后面探究三角形、梯形的面积计算方法供给方法迁移。

  运用现代化教学手段,对几种剪拼的方法进行总结,为学生架起由具体到抽象的桥梁,使学生清楚的看到*行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点。

  3、注重优化练习,拓展思维

  练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。

  第一题告诉学生底和高,直接求*行四边形面积,规范格式,检验学生是否到达运用公式,解决实际问题。

  第二题4道确定题,包含了学生的一些常见错误。第一道是强调面积单位,第二道强调计算时单位名称的统一,第三道强调*行四边形的面积是底乘高而不是底乘邻边,第4道强调底和高必须对应,强化学生的认知。

  第三题比较*行四边表的面积,认识等底等高的*行四边形的面积相等。本课练习能促使学生牢固的掌握新知。

  值得反思的的是:

  1、*行四边形转化成长方形课本上给出了两种方法,一种是沿着*行四边形的左上角的顶点剪开,另一种是沿着任意一条高剪开。其实并不是只沿着高剪开能拼成长方形,我能想到的还有将两个角剪下来*移到相对的部分。在教学过程中并没有展示这种方法,一是在学生探究过程中学生没出现这种方法(也许放的不够的原因);二是研究到学生的实际水*,不敢讲得太深。

  2、沿着*行四边形的高剪下来*移到相对的部分,必须会拼成长方形吗?这也是需要验证的。也是研究到实际情景,把这一部省去了,不明白是否会给学生造成错误的思维方式,是不是扼杀了学生数学的天赋。

  3、预设不充分,学生的主体地位体现不够。展示数方格这种方法的时候,学生是沿着*行四边形的高剪下来,移到另一边去拼成长方形,把半格的拼成整格来数,这是一种多么好的方法,但教师不但没有预设到,并且没有及时领会到学生的意图,急于走预设,把正确答案给出,导致这一环节不完整,教师思路不那么清晰了,这是我今后最应当注意并改正的。

  4、透过这一节课的教学能够看到,很多学生不敢动手,有想法不会表达,所以我们一线教师应当清醒地认识到加强常态课研究的必要性,在日积月累中提升学生的数学素养。

  教学是一门有着缺憾的艺术。做为教师,往往在执教后留下或多或少的遗憾,只要我们思考了,改善了,我们的课堂就会更加精彩。

《*行四边形的面积》教学反思4

  1、深刻理解教材是有效课堂的基础

  教师如果没有深入地解读教材、领会编者的意图,而为了追求新意而过度改编教材内容,替换学习材料,往往会把数学知识固有的内涵丢掉,无法有效完成教学任务。这节课作为传统的教学内容,有那么多种讲法,教材为什么要这样编排和设计呢?

  教学之前,我觉得数方格对*行四边形面积公式的探究帮助不大,所以总想把它删去,节约出更多的时间来探究,但经过对教材的反复研读,我终于明白数方格在计算面积中的价值。

  这是一种直观的计量面积的方法,同时也是本节课学生新旧知识的连接点,学生在数方格的过程中很容易发现*行四边形的底,高和面积与长方形有着联系,为进一步的探究提供了思路。所以,深挖教材是有效进行教学设计的第一步。

  2、课堂环节的合理设计是有效课堂的保证

  教师除了对教材的准确把握,还要对学情进行深入的分析,只有对学生的认知起点和认识发展过程进行分析和研究,才能设计出有效促进学生发展的数学活动。

  教师首先要用简约的情境带学生迅速进入课堂,并引发一系列的数学思维活动。

  然后,教师要精心选择教学内容,合理设计教学形式,让课堂活动变繁为简,变杂为精在学生探究*行四边形面积公式时,教师放得多了,探究的效率必然低下,扶得多了,学生探究的空间会大大缩水,束缚学生的发展。

  因此,对于教师应该给予什么样的指导,需要教师根据学情来合理预设。

  3、数学思想方法的提炼是有效课堂的精髓

  让学生获得基本的数学思想方法是一小学新课程改革的新视角之一。数学思想方法的孕育犹如胎儿的发育,有一个从模糊到清晰,从未成形到成形再到成熟的过程,至于转化的思想,在本册中多次用到。

  如第一、二单元中,小数乘法和小数除法的计算,无不是把小数转化成学过的整数进行的。*行四边形在整个小学阶段的数学教学内容中是一个承上启下的图形,教师应该看到学生学习计算*行四边形的面积,方法的价值更大,通过学习割补转化的方法,为后面学习三角形面积、梯形面积、圆的面积埋下了伏笔。学生以获取知识为明线,以探究数学思想方法为暗线,明暗结合与总结时的画龙点睛。让数学思想方法该露脸时就露脸,使学生知其然,更知其所以然。

  教学是一门有遗憾的艺术,虽然我在课前对教学的各个环节作了精心的预设,但面对生成的时候,自己的处理依然有些草率。在让学生展示自己剪拼的作品时,当让学生展示完*行四边形沿顶点向对边作高和作任意高两种方法剪拼一个长方形后,有一个学生兴致勃勃地展示他沿*行四边形对角线剪开,通过*移得到一个新的*行四边形的方法,由于没有达到我们拼成学过图形的目标,当即我就简单地否定了,那个学生也尴尬地坐下了。

  课后,这个学生坐下时的表情还深深印在我的脑海中,这个学生有着大胆动手,敢于交流分享的学习态度。他让同学们更深刻地认识到为什么一定要沿高来剪开,这是多么值得表扬啊!细节成就完美,关注课堂细节,敏锐地发现教育契机,还需要我们教师不断学习,不断努力,不断总结。

《*行四边形的面积》教学反思5

  小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会*行四边形、三角形、梯形面积计算的任务。*行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出*行四边形面积公式,把*行四边形转化成为长方形,并分析长方形面积与*行四边形面积的关系,再从长方形的面积计算公式推出*行四边形的面积计算公式,然后通过实例验证,使学生理解*行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。

  本课关键是*行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出*行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出*行四边形等积转化成长方形。

  心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。

  我让学生动手操作,想办法将*行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来*行四边形什么变了,什么没变?拼成长方形的长和宽与原来*行四边形的底和高有什么联系?通过上面问题的思考,学生对*行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个*行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来*行四边形的底,拼成的长方形的宽相当于原来*行四边形的高,*行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以*行四边形的面积=底×高。接着我让学生同桌互相说一说整个操作过程,使学生真正理解*行四边形转化成长方形的过程。

  对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:

  第一层:基本练习:书本P82第1题

  有利于学生加深对图形的认识,正确分清*行四边形底和高的关系。

  第二层:综合练习:

  1、你能想办法求出下面两个*行四边形的面积吗?要求这两个*行四边形的面积必须先干什么?

  让学生自己动手作高,并量出*行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。

  2、你会求出这个*行四边形的面积吗?

  通过不同的高引起学生的混淆,在计算中让学生明确在计算*行四边形面积时底要找出与它相对应的高,这样才能准确求出*行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。

  第三层:扩展练习:

  1、下面这两个*行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的*行四边形吗?可以画几个?(图在课件中)

  学生综合运用知识,进行逻辑推理,明白*行四边形的面积只与底和高有关,等底同高的*行四边形的面积相等。

  整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

  教学是一门永远有遗憾的艺术,虽然我也很努力地想上好这节课,但在教学中存在着很多问题,以下是我今后需要改进的地方:

  数学课不仅要教给学生知识,回顾数学更应该带给孩子数学思想方法,本节课有两个重要的思想,第一、*移的数学思想。在本节课中没有体现出来。第二、本节课最重要的思想方法,“转化”突出的还不够,也就是说学生没有真正体会到这种思想的重要性。

  前面的环节太耽误时间,今后要想办法优化,不仅是本节课,所有课都应该这样做,课堂上每一个环节的设置都要围绕核心目标,对核心目标重要性不大的都要舍掉,以保证核心目标在课堂上的黄金时间解决。

  通过教学发现,练习设置要根据学生的学习情况和知识的掌握情况进行,不宜拔高,本课应以基本练习巩固为主。

《*行四边形的面积》教学反思6

  这堂课能围绕教学目标层层展开,先从身边的情景引入,激发学生探求新知的兴趣;接着让学生猜想*行四边的面积可能怎样求?再通过活动单一的内容用数格子的方法验证。学生都能数出它们的面积,在这个环节中学生做的很好。

  接下来又用转化方法进行再次验证,仍然是以小组合作的形式进行,让学生自己动手画一画、剪一剪、拼一拼推导出*行四边形的面积计算公式。然后让学生到前面演示整个操作过程。在这过程中,我能用严密、准确地、有逻辑性的语言,富有层次性的问题层层深入的引导学生来探究、发现规律,得出结论,效果良好。接着我又向学生介绍了不一样的几种方法,可以让学生感受到方法很多,也可以让他们有再试一试的想法,可以可以发展他们的创新思维。而且,形象的多媒体课件为公式的推导起了一个很好地作用。

  课件还很好的演示了*行四边形转化成长方形的过程,看起来很直观。但是本节可课也有不足之处,在书写板书时最后的那个*行四边形画的不好看,线没有画直;还有最后望了否定学生的另一种猜想边×边的方法不行。在今后的教学中我一定注意书写板书,注意课堂的完整性。

《*行四边形的面积》教学反思7

  “数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程,数学教学要求紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设各种情境,为学生提供从事数学活动的机会,激发他们对数学的兴趣,以及学好数学的愿望。”为此,老师们都非常重视情境的创设,力求将自己置于组织者、引导者、合作者的地位,树立以学生为主体的教学观。

  对于情境教学,首先我们应该充分重视“问题情境”在课堂教学中的作用,不仅要在教学的引入阶段格外注意,而且应渗透到教学过程的每一个环节,在情境中不断激发学习冲动,使学生经常处于渴求新知的状态,激发其自身的学习动力和思维空间。其次,从长远的前景来看,引入教学情境不仅要让学生“学会”数学,更重要的是使他们“会学”数学,培养他们在生活中科学地思考,把学习中探索、体会到的观念、方法尽快地提升到理论的高度。当然,要设置好情境还不可忽视情境创设和教材主旨的统一,始终坚持从激发学生的学愿望和参加动机出发。以下我将根据情境教学的要求结合《*行四边形的面积》来谈一谈?

  1、把数学知识的教学融于现实情境中,学生在情境中学的高兴,学的扎实。我通过主题图这一个情境,将新知的学习置于这一现实情景中,通过猜想、转化、*移、旋转、演示等活动,进一步加强数学知识与生活的联系,感受数学在生活中的作用,体会学习数学的意义与价值。

  2、充分发挥学生的主体作用,加强学生主观能动性的培养。整节课中,老师给学生提供了探究交流的时间和空间,并创设多种教学活动,激发学生兴趣,学习与巩固知识。例如在*行四边形面积计算方法推导过程中,老师先让学生独立思考,然后互相交流,最后动手操作,把*行四边形转化成长方形,推导出*行四边形的计算方法,在*等和谐的氛围中培养了学生的合作意识、团队精神和动手能力。

  3、 有效的渗透了数学的一些思考和学习方法。在教学中,老师让学生经历了提出猜想—操作转化—验证猜想这一过程,对学生以后学习三角形面积和梯形面积打下了良好的基础。

  4、充分利用小组合作这一课题的有效性,发挥学生的主体地位和主观能动性,加强师生合作、生生合作,培养学生的合作能力和交流能力。

《*行四边形的面积》教学反思8

  《*行四边形的面积》一课,是北师大版数学五年级上册第四单元第三课的内容。在这节课中,我主要讲授的第一课时的内容。在教学中,我通过让学生动手做一做,感受“转化”的思想,进而理解*行四边形的面积计算方法。反思这节课,我总结了成功的经验以及不足之处,具体概括为以下几点:

  优点

  一、注重学生的课前预习工作,让学生做好了学习新知的准备

  在教学前,我先让学生预习《*行四边形的面积》一课。通过预习,学生知道了这节课的学习重点(掌握*行四边形的面积计算方法)。在学习时,每位学生都准备好了学具(*行四边形卡纸、剪刀)。

  二、注重课堂上学生的自主学习,让学生成为学习新知的主人

  在探究*行四边形的面积计算方法时,我引导学生思考“如何将*行四边形转化成已经学过的图形,再来求面积?”然后组织学生独立操作(剪、拼),进而引导学生思考“拼好后的长方形与原*行四边形有什么关系?”在这些活动中,学生都认认真真地动手剪拼,并在小组内交流各自的想法。每位学生的动手操作能力、语言表达能力、逻辑思维能力都得到充分的锻炼。再组织在全班交流中,学生的语言表达能力、逻辑思维能力又得到了进一步的.提高。由此,对*行四边形的面积计算方法的由来也就理解的相当透彻。教学效果很好。

  三、注重多媒体辅助教学设施的应用,让学生在各种新奇的环境下主动学习。

  在课前,我编辑了切合学生心理特征的教学课件。在课堂上,极大的吸引了学生的注意力。使学生纷纷主动地在课件中寻找问题,解决问题。

  不足与相应措施

  学生之间的评价太少,以至于学生看不到自己与他人的差距。在今后的教学中,要优化教学环节,在教学中,适当的组织学生进行生生之间的评价。

《*行四边形的面积》教学反思9

  *行四边形的面积,是教师相当熟悉的一堂课,我曾多次听这课,发现*行四边形的面积教学存在三种状态:第一种状态,教师认为学生学习数学就是要掌握知识,所以教学注重对学习“*行四边形面积”的知识铺垫,仅仅关注学生对*行四边形面积计算方法的识记与演练,掌握;只要结果,不要过程。第二种状态,教师开始重视学生获得知识的过程,但重视过程是为了更快地接受知识、更好地理解知识,却忽视了过程本身的价值。第三种状态,希望学生不仅获得*行四边形面积计算公式的知识,而且能获得数学思想和方法;不仅能够正确地应用公式,而且能更好地理解这一公式的来源。在学习中,展示探求*行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”的价值追求。我一直在苦苦追求着第三种状态,因此在课前、课中我一直思考以下四个问题:

  1、数学学习,除了关注知识的传承,还应关注什么?

  2、怎样从学生的角度出发设计教学?

  3、怎样让数学课堂变得厚重?除了显性课程外,学生还能获得哪些方面的发展(隐性课程)?

  一节厚重的数学课,总是能够让人看到学生数学素养的提升。

  一节厚重的数学课,总是能够让人看到学生数学地思考问题。学生有潜力,并非这个孩子考试的分数高,而是这个孩子的后劲足。这些后劲足的孩子思维活跃,往往能在复杂的信息中抓住关键点,能透过复杂的现象抓住数学的本质。也就是,这些孩子会数学地思考问题。

  4、如何优化课堂结构?

  基于以上四个问题的思考,我把“有益的思考方法和应有的思维习惯”放在本节课教学的首位。在数学教学中如何以数学知识为载体,培养学生有益的思考方式和思想方法。我在设计与执教“*行四边形的面积”一课中获得一些启示。

  一、以数学知识教学为载体,渗透“转化”的数学思想方法,发展学生主动获取知识的能力。

  “转化”法是开展数学研究、解决数学问题常用的方法,在小学数学教学中起着十分重要的作用。小学阶段的几何形体面积、体积计算公式都是运用“转化”法推导的。*行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,就显得尤为重要。对于“转化”思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。

  教师首先出示三个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的数学思想方法。这样,学生面对“计算*行四边形面积”这一新问题,就很自然地得到了两种猜想:用*行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用*行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个*行四边形的面积怎么会有两个答案呢?

  激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。在课堂小结时,我不满足于学生的认识仅仅在对具体知识的获得上,而是启发学生提炼出数学的思想方法。教师最后的评价,既给学生以鼓励,更给学生以导向,导向在数学的思想方法上。因为数学的思想方法是数学的灵魂,学生拥有了它,其主动获取知识的能力将会得到提高,创造力的发展就有了基础。

  二、以探索解决问题为主线,运用“大胆猜想,小心求证”的数学学习方法,培养学生探索精神和探究能力。

  现代科学的探索活动,常常是人们在已有的科学知识的基础上,发挥人的主观能动性,通过想象、直觉等多种思维方法,提出猜想性假说,建立起新的概念和理论框架,推出具体结论,最后通过实验予以验证。这种“猜想—验证”的方法已成为科学探索中常用的方法。

  这节课,采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究*行四边形面积公式的数学活动中。当学生对*行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。

  这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学思想方法的启蒙。

《*行四边形的面积》教学反思10

  这节课我们所学习的的内容主要是*行四边形面积的计算。是在学生以前学过的长方形的面积和*行四边形认识的基础上学习的,*行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所以*行四边形面积公式的推导,是本节课的重点。这节课的教学我们不但要让学生学会*行四边形面积计算公式的知识,而且能获得数学思想和方法;不仅能够正确地应用公式,而且能更好地理解这一公式的来源。

  一、课程开始,我先让学生回忆学过了哪些*面图形,想一想长方形的面积是怎样求的?

  *行四边形的面积怎么求呢?猜想*行四边形与长方形是否存在联系。引导学生用“转化”的方法思考。

  二、注重学生数学思维的发展

  在探究的过程中,我给了学生充足的时间让学生通过剪一剪、拼一拼等学习活动发现*行四边形和长方形的关系。在这个基础上利用学习提纲进行提示:长方形的面积与原*行四边形的面积有什么关系?长方形的长和宽与*行四边形底和高有什么关系?让学生在动手操作中发现图形之间的关系,根据它们之间的关系推导出*行四边形的面积。并且让学生得出结论:因为长方形的面积=长乘宽,所以*行四边形的面积=底乘高。最后利用多媒体课件形象、直观的演示。通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了*行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  三、不足之处

  本节课还有一些不足之处。在进行把*行四边形转化为长方形时,让学生利用学习提纲理解长方形的长、宽分别和*行四边形的底和高相等是学生推导*行四边形公式的关键。其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等。而我只强调了拼后的面积相等这个概念,为什么面积相等?这里应该将学生的图形粘在在黑板上,让学生交流出自己的原因。没有往更深的地方挖掘,所以学生的思维只停留只要沿着*行四边形的一条高剪下,都可以拼成一个长方形。而没有在操作的过程深层次经历知识的形成过程。

  虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善等等。


《*行四边形的面积》评课稿3篇(扩展5)

——《*行四边形面积的计算》教学反思3篇

《*行四边形面积的计算》教学反思1

  1.先让学生回忆学过了哪些*面图形,想一想长方形的面积是怎样求的,做到用“旧知”引“新知”,把“旧知”迁移到“新知”中,渗透了转化的思想方法。

  2.注重学生数学思维的发展,设计了剪一剪、拼一拼等学习活动,让学生在活动中探索出*行四边形的面积公式。

  3.注重了师生互动、生生互动,这节课始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。师生之间应该互有问答,学生与学生之间也要互有问答。

《*行四边形面积的计算》教学反思2

  *行四边形面积的计算是以长方形的面积计算为基础,它为进一步学习三角形的面积,梯形面积的计算打下了基础。我在教学本节课时,采用剪拼的方法,把*行四边形转化为与它相等面积的长方形,从而把新旧知识联系起来,从长方形的面积公式推导出*行四边形的面积公式。

  在本节课的教学中,我先复习长方形的面积公式,让学生说出可以通过数格子和利用公式求出长方形的面积,为下面要学习的*行四边形面积作铺垫。当让学生通过数方格说出*行四边形的面积时,学生很容易数出面积,并且说出它的底和高的长度。我及时抓住这三个量,让学生大胆猜想:*行四边形的底和高与它的面积之间可能存在什么关系呢?这个问题很快激起学生的探究欲望,为下面要探讨的*行四边形面积公式的推导做好铺垫。

  为体现学生的主体地位,改变以往的“以教师为中心”的教学方式,在推导*行四边形面积公式时,我为学生创设了自由、宽松的探索空间。通过学生自学、动手画、剪拼这些操作,培养了学生的自学能力和动手操作能力,使他们变“学会”为“会学”,对学习要求中提出的第2、3个问题:转化后的图形与*行四边形有什么关系?你认为*行四边形的面积该怎样求?学生在小组合作中各抒己见,充分阐述自己的理解,这样的教学使学生乐于探索,敢于探索,也激发了学生的创新意识。

  在教学完这节课后,听课老师、评课的.领导对本节课进行了评价,从这节课中我看到了自己的不足之处,下面认真进行剖析

  1.课的开始复习内容过长,导致本节课新授知识部分时间不多。练习题与检测题进行的过于仓促,使基础不够好的学生没有充分理解和掌握。复习内容中指出*行四边形的底和高这部分内容可以删去,在新课教学中体现出来。

  2.复习部分长方形的面积的两种求法与通过数方格求*行四边形的面积应该同时在课件中显示,进行比较,从而引入新课。

  3.教学中某些环节的过渡不恰当。如:长方形的面积学生通过数方格和利用公式求出来了,*行四边形的面积学生通过数方格说出来后,可以说:除了数方格,那么能否像计算长方形的面积那样存在一个面积公式呢?很自然为下面要推导的公式作准备。

  4.学习要求的设计不够合理。我提出了两个学习要求:(1)自学课本第65页。(2)小组合作完成三个问题。两个要求要综合起来体现,让学生为了完成所出示的任务,自己通过看书,小组合作交流,边看边操作来完成。

  针对自己在教学中的不足,今后要加强学习,多听课、多请教,多与同科目老师交流,力争使自己在教学艺术上取得更大的进步。

《*行四边形面积的计算》教学反思3

  一、借助游戏,使学生感知转化。

  转化在数学学习中是一种非常重要的学习方法和思想,对学习三角形、梯形面积的学习又非常重要的作用。课前游戏环节先用口令形式,进而改为用数字代替口令,让学生在游戏中感知转化、认识转化。既为新知的学习做准备,又调动了学生的积极性,学生乐于参与。

  二、联系学生生活,创设情境

  结合学生原有的认知水*,通过猜五年(2)班和五年(4)班清洁区的面积创设情境,把生活问题转化为数学问题,通过猜一猜,激发学生的学习兴趣,让学生感受知识来源于生活。

  三、运用转化,推导*行四边形面积公式

  在学生理解了转化的基础上,提出“能不能把*行四边形转化成我们学过的图形呢?”同时让学生互相讨论,通过剪一剪,拼一拼,转化成自己会算面积的图形。学生通过实际操作,用不同方法把*行四边形转化成了长方形,并通过*行四边形和长方形的内在联系,共同推导出其面积计算公式。

  有待加强:

  一、整个教学过程我认为没有“放”。作为学生的引导者,教师的这个角色没有充当好。公式的推导过程可以让学生慢慢发现,适当引导即可。我怕完不成教

  学任务,就带着学生比较两个图形的特点,得出公式。其实在备课中,我还是准备让学生多讲,通过发现、比较得出公式。不敢放,学生的主体性没得到充分的发挥。

  其次,学生通过拼、剪后,示范拼剪过程时,应规范学生的操作过程。如当学生说沿着高剪时,带着学生先作*行四边形的高,使学生明确*行四边形有无数条高,所以沿着*行四边形任意一条高剪开,都可以得到一个长方形。由于是赛讲课,怕出错,因此教程基本按备的课来上,这是由于应变能力较差,有待于多钻研教材,做到备课时也要备学生,对课堂有可能出现的各种情况有正确的估计。


《*行四边形的面积》评课稿3篇(扩展6)

——小学数学《*行四边形的面积》说课稿3篇

小学数学《*行四边形的面积》说课稿1

  一、说教材

  (一)说教材的地位与作用

  《*行四边形的面积》是北师大版小学数学五年级上册第二单元的内容。它是在学生已经学习了*行四边形的特征、长方形和正方形的面积计算、面积概念和面积单位基础上来进行教学的。学生学了这部分内容,能为以后学习三角形和梯形的面积公式打下基础。因此,本节课在小学数学学习中起到承上启下的过渡作用。

  (二)说教学目标

  根据以上对教材的理解与内容的分析,按照新课程标准中掌握4-6学段空间与图形的要求,以及学生所具有的认知结构特征,我将本节课的教学目标定为:

  1.知识目标:能应用公式计算*行四边形的面积;

  2.能力目标:理解推导*行四边形面积计算公式的过程,培养学生抽象概括的能力。

  3.情感目标:发展学生的空间观念,培养学生的思维能力;在解决实际问题的过程中体验数学与生活的联系。

  (三)说教学重难点

  根据说教材的地位与作用、教学目标以及新课程标准中的教学内容和学生的认知能力,我将本节课的

  教学重点定为:能应用公式计算*行四边形的面积。

  教学难点定为:理解*行四边形面积的推导过程,并能运用公式解决实际问题。

  二、说学情

  1.在学习今天的内容之前,学生已经掌握了*行四边形的特征以及长方形与正方形的面积基础之上学习的,有一定的知识积累。

  2.五年级的学生求知的欲望和能力,好奇心都有所增强,对新鲜事物开始思考、追求、探索。但是形象思维占主导地位,需要动手操作,理解知识需要具体的实物作支持。

  三、说教法、学法

  根据本节课的教学内容和学生的思维特点,以及新课程理念学生是学习的主体,教师是引导者、组织者、合作者,我准备采用以下几种教法和学法:

  1.教学中,我将通过生活情境的创设,利用多媒体教学课件,引发学生学习数学的兴趣和积极思维的动机,引导学生主动地探索。

  2.动手实践、主动探索、合作交流是学生学习数学的重要方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。通过动手操作,把*行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出*行四边形面积的计算公式。教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考。

  3.满足不同层次学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固*行四边形面积计算方法,提高学生的思维能力。

  4.联系生活实际解决身边的问题,让学生初步感受数学与生活的密切联系,体验数学的应用,促进学生的发展。

  四、说教学过程

  (一)创设情境、激趣导入。

  通过创设情境:小兔乐乐想从三快草地中(有正方形、长方形以及*行四边形),找一块面积最大的草地去吃草,却不知道怎么计算哪块土地的面积最大,请同学们帮助解决。学生利用以前的知识能够计算出其中正方形和长方形草地的面积,不能计算出*行四边形草地的面积。这一环节的设计,不仅复习了旧知识,还体现出数学就在我们的身边,从而激发学生学习的兴趣及学习的积极性。

  (二)主动探究,获取新知。

  学生独立思考,动手操作,尝试用不同方法计算*行四边形的面积。根据这些方法,展开其中的割补法,通过转化-找关系-推导这一过程,让学生经历操作、观察、分析、比较、推理、交流,自己根据长方形面积公式概括出*行四边形面积的计算公式。

  这一环节的设计,培养了学生思维的灵活性,发挥了学生在课堂教学中的主体作用。

  (三)练习应用,巩固提高。

  课后练习和一些变式的习题。

  紧扣教学内容和教学环节,设计多种形式的数学练习,满足不同层次学生的求知欲,体现因材施教的原则,为学生提供创造性思维的空间。

  (四)联系生活,深化应用。

  联系生活,解决实际问题。这一环节的设计,让学生感受到数学与生活的密切联系,用学到的知识与解决实际问题,促进理论同实践的结合。

  (五)总结:

  总结内容主要让学生清楚:要求*行四边形的面积,必须知道它的底和高或量出底和高。

  (六)布置作业:

  自编一道有关*行四边形面积的应用题。富有实践性和应用性,鼓励学生利用数学知识解决生活中的实际问题。

小学数学《*行四边形的面积》说课稿2

  一、内容分析:

  九年义务教育六年制小学数学教材关于几何初步知识的安排特点是:从一年级第一册教材起逐步安排学生能够接受的几何初步知识,其中第六册教材中安排了长方形和正方形的面积计算;第八册教材中安排了*行四边形、三角形和梯形的认识,清楚了其特征及底和高的概念。而本册(第九册)教材中"*行四边形的面积",是在学生掌握上述内容的基础上安排的。所以若想使学生理解掌握好*行四边形面积公式,必须以长方形的面积与*行四边形的底和高为基础,运用迁移和同化理论,使*行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外*行四边形面积公式这一内容学习得如何,直接与学习三角形和梯形的面积公式有着直接的关系。

  二、教学目标:

  1、使学生理解并掌握*行四边形面积计算公式,会运用*行四边形的面积公式求*行四边形的面积。

  2、发展学生的空间思维能力。

  三、教学重难点:

  教学重点:

  使学生能够运用*行四边形面积公式正确计算出*行四边形面积。

  教学难点:

  *行四边形面积公式的推导过程。

  四、教具学具:

  1、用Flash对照教材上的插图制成复合课件为教师的演示教具;

  2、剪成一个长为40厘米,宽为30厘米的长方形和底为40厘米,高为30厘米的*行四边形硬纸片为教师演示教具;

  3、让每个学生准备一个*行四边形纸片和一把剪刀。

  五、教学环节:

  根据新课程理念,为突出学生的主体地位和教师的主导地位,我用多媒体课件调动学生的积极性,让学生可以积极的动脑思考、动手操作,从而妥善的将教学目标和教学重点、难点完成好,我安排了以下教学环节。

  (一)、复习迁移

  由已知到未知,即由旧知识引入新知识,引导学生进行类推,掌握新概念。这是教学抽象的数学知识的一种重要途径。"*行四边形的面积"这一内容,与长方形面积的计算有着密切的联系,适合用这一途径进行教学。

  具体做法如下:

  1、出示长方形教具:一长方形的长是40厘米,宽是30厘米,面积是多少*方厘米?

  2、出示*行四边形纸片,提问:这是什么图形?什么叫*行四边形?谁能指出它的底和高?(底40厘米,高30厘米)

  3、比较黑板上长方形与这个*行四边形的面积谁大谁小?

  在这里通过第1、2两道题的复习,使学生清楚长方形的面积公式并清楚了*行四边形的概念及底和高的含义,为推导*行四边形的面积公式打下了扎实的基础。通过第3题的练习,产生悬念,引起学生学*行四边形面积公式的动机与欲望,教师由此引出新课。

  比较两个图形面积的大小,仅靠肉眼观察是不够的,必须科学地计算出它们的面积才能正确比较。长方形的面积我们会求了,*行四边形的面积怎样计算呢?这节课我们就来研究这个问题。

  板书课题:“*行四边形的面积”,进入第二个环节。

  (二)、引导发现

  在这里,我化抽象为具体,将书中的插图整合到一起制成课件,便于学生观察比较。

  首先通过数方格引导学生发现:当长方形的长和宽分别与*行四边形的底和高相等时,它们的面积也相等。

  具体做法如下:

  1、出示复合Flash课件,从中取出一个小正方形,使学生明确,每一个小方格的边长都是1厘米,面积是1*方厘米。

  2、让学生观察图中出示长方形,让学生数一数,长、宽及面积各是多少?

  3、在图中出示*行四边形,让学生数一数,它的底、高及面积各是多少?(出现不满一格的都按半格计算)

  4、观察数出的数据,你发现了什么?

  然后借助长方形的面积公式,引导学生发现*行四边形的面积公式。具体做法如下:

  1、引言:用数方格的方法求面积很不方便,因此我们有必要探索出*行四边形面积计算的一般方法,你们有信心完成吗?

  2、让学生拿出准备好的*行四边形纸片,从*行四边形的顶点向对边做一条高,然后沿这条高线用剪刀剪开,将剪开后的两部分拼成一个长方形。

  3、出示课件“*行四边形到长方形的转化过程,加强学生印象,辅助学生理解,让学生分组观察思考:把剪拼后的长方形与原*行四边形比较。提问:①面积是什么关系?为什么?②长方形的长和宽与*行四边形的底和高是什么关系?为什么?

  4、引导学生得出结论:因为长方形的面积=长×宽,所以*行四边形的面积=底×高。(板书)

  5、公式用字母表示。这一步骤需要使学生清楚每个字母的含义,并且知道S=a·h也可以写成S=ah。(板书)

  6、引导学生运用公式解决实际问题。首先让学生看着*行四边形的面积公式回答:若想求*行四边形的面积,应该知道哪些条件?然后让学生比较新课开始前*行四边形的面积与长方形面积的大小,解除悬念。再让学生独立思考书中的例题,在教师的扶持下,让学生在黑板前和黑板下齐做,教师巡视指导,共同订正。

  (三)、巩固深化

  根据学生的认知规律,我为学生设计了梯度练习,以对所学内容进行巩固和深化,习题可以根据情况进行增删。

  1、求下列*行四边形的面积(单位:cm)(给出几个*行四边形图形)。

  2、在两条*行线间画出两个*行四边形试判断甲和乙谁的面积大?谈谈你有什么发现?

  3、铺一块底20米,高15米的*行四边形草坪,每*方米草坪售价15元,铺这块草坪总共用多少元?

  (四)、课堂总结

  我总结的内容主要是让学生清楚:要求*行四边形的面积,必须知道它的底和高或量出底和高。

  (五)、板书设计

  *行四边形的面积

  *行四边形面积=底×高

  S=a·h或S=ah

  本节课,在教学过程中学生是一个积极的探求者,教师的作用是形成一种学生能够独立探索的情境,而不是提供现成的知识,所以用多媒体辅助教学,可以创设更好的学习情境,实现发现学习。

小学数学《*行四边形的面积》说课稿3

  一、说教材

  《*行四边形的面积》是小学数学五年级上册第五单元的内容。它是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上,进行教学的。学生学了这部分内容,能为以后学习三角形和梯形的面积公式奠定良好的基础。因此这节课的内容在整个教材体系中起到了承上启下的作用。

  二、说学生

  本课学生对数格子法、剪割拼补法有了一定的了解,但是,让学生切实理解由*行四边形剪拼成长方形后,长方形的长和宽与*行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解*面图形之间的变换关系,发展空间观念。

  三、说教学目标及重难点

  根据新课标的要求及教材的特点,充分考虑到五年级学生的思维水*,我确立如下三维教学目标:

  1、知识目标:掌握*行四边形面积的计算公式,能正确计算*行四边形的面积。

  2、能力目标:理解推导*行四边形面积计算公式的过程,培养学生抽象概括的能力。

  3、情感目标:发展学生的空间观念,培养学生的思维能力;在解决实际问题的过程中体验数学与生活的联系。

  教学重点:能应用公式计算*行四边形的面积。

  教学难点:理解*行四边形面积的推导过程,并能运用公式解决实际问题。

  四、说教学方法

  本节课,我将采用“自主探究、合作交流”的教学方式。通过创设情境,课件演示和实践操作,了解求*行四边形的面积与什么有关系,再让学生通过动手剪拼,推导出*行四边形的面积计算公式,直观突破了难点。这样大大激发了学生参与学习的积极性。与此同时,我还组织学生认真操作、观察、分析和讨论,来解决生活中的实际问题。

  五、说教具与学具准备

  教具:多媒体课件、*行四边形纸、剪刀、三角板。

  学具:学生每人一个任意大小的*行四边形纸片剪刀

  六、说教学过程

  为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,我把教学过程分为以下五个教学环节:

  第一环节:创设情境、激趣导入。

  通过创设情境:小兔乐乐想从两块草地中,找一块面积最大的草地去吃草,却不知道怎么计算哪块土地的面积最大,同学们能帮助小兔解决吗?接着引导学生看图一是什么图形?该如何计算它的面积呢?学生一边集体回答一边(板书长方形的面积计算公式)然后提问图二是什么图形?该怎么求它的面积呢?学生利用以前的知识不能计算出*行四边形草地的面积。从而激发了学生积极探求知识奥秘的欲望,使课堂教学充满活力。

  第二环节:动手实践,多维探究。

  1.我首先提出“怎样比较长方形草地和*行四边形草地的面积的大小呢?”这个问题引发学生小组讨论。小组学习中,学生不受任何束缚,开动脑筋,各自想尽一切办法,这样不但达到大家参与,共同提高的学习效果,而且激活了学生的思维,激发了学生的创新意识,培养他们的自主合作、探究的精神。汇报交流时,找准切入点,突破难点。利用从小组汇报中得来的信息,引导学生确定办法的可行性。学生想出了很多办法,如:数方格法、重叠卡片对比法、剪割拼补法等等。不论哪一种方法都是宝贵的,因为,这不是教师强加给他们的,而是学生自己研究讨论的结果,是课堂中生成的收获。引导学生分析、验证是发展学生思维的重要方法。所以,在学生汇报出多种答案时,我组织学生分组实践各种办法,并要求说明实践过程,要合情合理,学生在认真、细致的操作中认识到长方形与*行四边形之间的`联系。

  2.其次(课件出示数方格图)要求认真观察,然后填写表格,最后讨论总结出:长方形的长和*行四边形的底相等,长方形的宽和*行四边形的高相等,并得出两个图形面积相同的答案。汇报交流时,他们争先恐后发表自己的见解,课堂气氛异常活跃,民主、宽松、和谐、愉悦的氛围自然形成,学生获得积极的情感体验,同时,也为下一步推导*行四边面积计算公式做好充分的准备。

  第三环节:抓住重点环节,深入推导梳理

  (1)实验操作

  学生小组合作动手操作把*行四边形转化为长方形,并选取小组代表把拼剪的图形张贴在黑板上。学生操作方法如有误,可用课件演示正确方法,使学生学会*移图形的方法。这一环节的安排,既锻炼了学生的动手能力,也发展了学生的空间概念,更为下一步探究*行四边形的面积公式积累了感性经验,同时也培养了学生的协作精神。

  (2)合作探究

  通过感性经验的积累和实践的结果,讨论:

  a、是不是任何一个*行四边形都能剪拼成长方形?*行四边形转化成长方形后它的面积有没有变化?

  b、拼成长方形的长与原来*行四边形的底有什么关系?

  c、拼成长方形的宽与原来*行四边形的高有什么关系?

  小组通过讨论达成共识,推导出*行四边形面积公式。

  (课件展示板书)*行四边形的面积=底×高

  然后指出:如果*行四边形的面积用S表示,底用a表示,高用h表示,那么*行四边形的计算公式还可以写成什么形式,让学生抢答,教师板书,这样又提高了学生用字母表示公式的能力。

  小结:整个新知识的教学,充分尊重学生的主体地位,让学生动手、动口、动脑,发现、比较、归纳,利用多媒体课件,从具体到抽象,从感性到理性循序渐进,推导出*行四边形面积计算公式,突破了难点,解决了关键,培养发展了学生能力。


《*行四边形的面积》评课稿3篇(扩展7)

——*行四边形的判定教学设计

*行四边形的判定教学设计1

  第一课时

  目标设计:

  知识目标:

  1、在对*行四边形认识的基础上,探索*行四边形的判定方法。

  2、通过逆命题的猜想、操作验证、逻辑推理证明的过程,体验数学研究和发现的过程,学会数学思考的方法。

  能力目标:

  能综合运用*行四边形的判定方法和性质解决一些简单的问题。

  德育目标:

  发展学生的合情推理能力,进一步培养学生的逻辑推理能力,规范推理的书写格式。

  重点、难点:

  重点:探究并掌握*行四边形的判定方法,能综合运用*行四边形的判定解决问题。

  难点:理解合情推理和逻辑推理的融合,书写规范的推理过程。

  教学方法:探究式

  学习方法:自主学习、合作交流

  教具准备:三角板、圆规、木条(两个长的相等,两个短的相等)、多媒体课件

  方法设计:

  导入新课

  1、创设问题情境

  有一块*行四边形的玻璃块,假如不小心打碎了,聪明的师傅拿着细绳很快将原来的*行四边形画出来了,你知道他用的是什么方法吗?带着这个问题,我们进入今天的探索。

  板书课题:*行四边形的判定(一)

  交待本节课的学习目标。

  2、回忆旧知

  (1)*行四边形的定义?

  (2)*行四边形具有哪些性质?

  (3)互逆命题的定义?

  3、提出问题,引入新知

  怎样判定一个四边形是*行四边形呢?当然,我们可以根据定义:两组对边分别*行的四边形是*行四边形来判定。还有其他的判定方法吗?本节课我们共同研究这个问题。

  探究新知

  一、自主学习

  (1)学生自主学习本节内容,整体感知,圈点出难点疑点。

  (2)大胆猜想:

  你能写出“*行四边形的两组对边分别相等”的逆命题吗?猜想这个命题是真命题还是假命题?

  活动结果:根据上一章所学习的逆命题定义,学生独立写出,进行大胆猜想。

  二、合作交流,实验操作(多媒体课件演示)

  请同学们拿出自己准备好的四段木条,四个同学一组活动,观察思考。

  问题:

  (一)、这四段木条能拼成一个*行四边形吗?

  (二)、转动这个四边形,改变它的形状,它一直是一个*行四边形吗?

  (三)、由此你可以得到什么结论?

  活动:学生动手操作,认真观察,精心交流,发表见解,得到结论,教师可以参与讨论,指导点拨。

  三、展示反馈

  抽小组代表将上述讨论结果展示给大家,实际操作,不足之处其他同学补充,教师多媒体演示,及时点拨,组织好学生。

  学生明确:两组对边分别相等的四边形是*行四边形。

  四、逻辑推理

  你能用所学的知识证明上述的猜想成立吗?

  已知:如图,在*行四边形ABCD中,AD=BC,AB=CD。

  求证:四边形ABCD是*行四边形。

  抽学生代表展示:

  证明:连结AC

  ∵AD=BC,AB=CD,AC=AC

  ∴△ABC≌△CDA(SSS)

  ∠1=∠2,∠3=∠4(全等三角形的性质)

  ∴AB∥CD,AD∥BC(内错角相等,两直线*行)

  ∴四边形ABCD是*行四边形(两组对边分别*行的四边形是*行四边形)

  由此我们得出*行四边形除定义之外,判定*行四边形的方法一:

  两组对边分别*行的四边形是*行四边形。

  符号表示:

  在四边形ABCD中,

  ∵AD∥BC,AB∥DC,

  ∴四边形ABCD是*行四边形。

  练习设计:

  1、已知: ABCD中,E,F分别是AB,CD的中点。

  求证:四边形AECF是*行四边形。

  2、已知:E、F是*行四边形ABCD对角线AC上的两点,并且AE=CF。

  求证:四边形BFDE是*行四边形

  课堂小结:

  学生总结:本节课的收获,判定*行四边形的方法:两组对边分别相等的四边形是*行四边形。

  教师总结:探索*行四边形的"判定方法的一般思路:逆命题猜想——操作验证——逻辑推理,提高自己的逻辑推理论证能力。

  课后作业:课后练习1、2。

  设计说明:

  本节课在引入的环节上,采用复习引入的方式。首先复习了*行四边形的定义和性质,唤起学生对已有知识的回忆,接着通过探究逆命题的真假直接引出本节课的学习内容和任务。同时,让学生初步感受*行四边形的性质与判定的区别与联系,为*行四边形的性质和判定的综合运用作了铺垫。

  知识的真正获得不是靠知者的“告诉”,而是在于学习者的亲身体验所得,本节课判定方法的得出都非常重视知识的发生、形成过程,让学生亲历了类比、观察、实验、猜想、验证、推理的整个过程,培养学生的探究能力,发展学生的合情推理能力。

  数学的学习要重视学习方法的指导。本节课通过由浅入深的练习和灵活的变式,引导学生善于抓住图形的基本特征和题目的内在联系,达到触类旁通的效果。

推荐访问:评课 面积 平行四边形的面积评课稿

Top