卓迈文档网
当前位置 首页 >专题范文 > 公文范文 >

2023年八年级上册数学重要知识3篇

发布时间:2023-02-20 11:15:28 来源:网友投稿

八年级上册数学重要的知识1  全等三角形  1.基本定义:  ⑴全等形:能够完全重合的两个图形叫做全等形.  ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.  ⑶对应顶点:全等三角形中互相重下面是小编为大家整理的2023年八年级上册数学重要知识3篇,供大家参考。

2023年八年级上册数学重要知识3篇

八年级上册数学重要的知识1

  全等三角形

  1.基本定义:

  ⑴全等形:能够完全重合的两个图形叫做全等形.

  ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.

  ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.

  ⑷对应边:全等三角形中互相重合的边叫做对应边.

  ⑸对应角:全等三角形中互相重合的角叫做对应角.

  2.基本性质:

  ⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.

  ⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.

  3.全等三角形的判定定理:

  ⑴边边边():三边对应相等的两个三角形全等.

  ⑵边角边():两边和它们的夹角对应相等的两个三角形全等.

  ⑶角边角():两角和它们的夹边对应相等的两个三角形全等.

  ⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.

  ⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.

  4.角*分线:

  ⑴画法:

  ⑵性质定理:角*分线上的点到角的两边的距离相等.

  ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的*分线上.

  5.证明的基本方法:

  ⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶

  角、角*分线、中线、高、等腰三角形等所隐含的边角关系)

  ⑵根据题意,画出图形,并用数字符号表示已知和求证.

  ⑶经过分析,找出由已知推出求证的途径,写出证明过程.

八年级上册数学重要的知识2

  轴对称

  1.基本概念:

  ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相

  重合,这个图形就叫做轴对称图形.

  ⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一

  个图形重合,那么就说这两个图形关于这条直线对称.

  ⑶线段的垂直*分线:经过线段中点并且垂直于这条线段的直线,叫做这

  条线段的垂直*分线.

  ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的.两条边叫

  做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做

  底角.

  ⑸等边三角形:三条边都相等的三角形叫做等边三角形.

  2.基本性质:

  ⑴对称的性质:

  ①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一

  对对应点所连线段的垂直*分线.

  ②对称的图形都全等.

  ⑵线段垂直*分线的性质:

  ①线段垂直*分线上的点与这条线段两个端点的距离相等.

  ②与一条线段两个端点距离相等的点在这条线段的垂直*分线上.

  ⑶关于坐标轴对称的点的坐标性质


八年级上册数学重要的知识3篇扩展阅读


八年级上册数学重要的知识3篇(扩展1)

——八年级上册数学知识归纳3篇

八年级上册数学知识归纳1

  三角形的稳定性

  1. 三角形具有稳定性

  2. 四边形及多边形不具有稳定性

  要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。 11.2 与三角形有关的角

  第1课时三角形的内角

  1. 三角形的内角和定理

  三角形的内角和为180°,与三角形的形状无关。

  2. 直角三角形两个锐角的关系

  直角三角形的两个锐角互余(相加为90°)。 有两个角互余的三角形是直角三角形。 第2课时三角形的外角

  1. 三角形外角的意义

  三角形的一边与另一边的延长线组成的角叫做三角形的外角

  2. 三角形外角的性质

  三角形的一个外角等于与它不相邻的两个内角之和。 三角形的一个外角大于与它不相邻的任何一个内角。

八年级上册数学知识归纳2

  多边形

  1. 多边形的概念

  在*面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。多边形的边与它邻边的延长线组成的角叫做外角。

  连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

  一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为

  2. 凸多边形

  画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。

  3. 正多边形

  各角相等,各边相等的多边形叫做正多边形。(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)

  多边形的内角和

  1. n边形的内角和定理

  n边形的内角和为(n2)180°

  2. n边形的外角和定理

  多边形的外角和等于360°,与多边形的形状和边数无关。

八年级上册数学知识归纳3

  基础知识梳理

  (一)、基本概念

  1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。

  2、全等三角形的性质

  (1)全等三角形对应边相等;(2)全等三角形对应角相等;

  3、全等三角形的判定方法

  (1)三边对应相等的两个三角形全等。SSS

  (2)两角和它们的夹边对应相等的两个三角形全等。ASA

  (3)两角和其中一角的对边对应相等的两个三角形全等。AAS

  (4)两边和它们的夹角对应相等的两个三角形全等。SAS

  (5)斜边和一条直角边对应相等的两个直角三角形全等。HL

  4、角*分线的性质及判定

  性质:角*分线上的点到这个角的两边的距离相等

  判定:角的内部到角的两边的距离相等的点在角的*分线上

  (二)灵活运用定理

  1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

  2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

  3、要善于灵活选择适当的方法判定两个三角形全等。

  (1)已知条件中有两角对应相等,可找:

  ①夹边相等(ASA)②任一组等角的.对边相等(AAS)

  (2)已知条件中有两边对应相等,可找

  ①夹角相等(SAS)②第三组边也相等(SSS)

  (3)已知条件中有一边一角对应相等,可找

  ①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS)

  证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:

  1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角*分线、中线、高、等腰三角形、等所隐含的边角关系);

  2.回顾三角形判定公理,搞清还需要什么;

  3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。


八年级上册数学重要的知识3篇(扩展2)

——八年级上册数学知识要点3篇

八年级上册数学知识要点1

  圆的性质

  (1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

  圆也是中心对称图形,其对称中心是圆心。

  垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的2条弧。

  逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的2条弧。

  (2)有关圆周角和圆心角的性质和定理

  ① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

  ②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

  直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

  圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。

  即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

  ③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

  (3)有关外接圆和内切圆的性质和定理

  ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直*分线的交点,到三角形三个顶点距离相等;

  ②内切圆的圆心是三角形各内角*分线的交点,到三角形三边距离相等。

  ③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。

  ④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)

  ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

  (4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直*分公共弦。

  (5)弦切角的度数等于它所夹的弧的度数的一半。

  (6)圆内角的度数等于这个角所对的弧的度数之和的一半。

  (7)圆外角的度数等于这个角所截两段弧的度数之差的一半。

  (8)周长相等,圆面积比长方形、正方形、三角形的面积大。

  点、线、圆与圆的位置关系:

  点和圆位置关系

  ①P在圆O外,则 PO>r。

  ②P在圆O上,则 PO=r。

  ③P在圆O内,则 0≤PO

  反过来也是如此。

八年级上册数学知识要点2

  极差

  它是标志值变动的最大范围。极差也称为全距或范围误差,它是测定标志变动的最简单的指标。换句话说,也就是指一组数据中的最大数据与最小数据的差叫做这组数据的极差。 极差英文为range ,简写为R,表示为:R=Xmax-Xmin。移动极差(Moving Range)是其中的一种。

  计算公式

  全距=最大标志值—最小标志值

  R=Xmax-Xmin

  (其中,Xmax为最大值,Xmin为最小值)

  例如 :12 12 13 14 16 21

  这组数的极差就是 :21-12=9

  例如,“早穿皮袄午穿纱”,这句话说明的气温特征数就是极差。

  方差计算公式:s^2=(1/n)*[(x1-x0)^2 + (x2-x0)^2 +...+ (xn-x0)^2]

  (X0即为x的*均值)

  极差、方差、*均数等知识都是数据统计的知识。

  极差与方差的区别与联系

  一、极差与方差的区别与联系

  1.极差反映的仅仅是数据的变化范围;方差反映的是数据在它的*均数附近波动的情况。

  2.极差的计算最简单,只需要计算数据的最大值与最小值的差即可,而方差的计算就要复杂得多,方差是一组数据中各个数据二这组数据*均数的差的*方的*均数。

  二、极差与方差的联系

  极差、方差都是用来描述一组数据波动情况的.,常用来比较两组数据的波动大小,极差、方差越小,波动越小,进而知这组数据比较稳定,极差、方差越大,波动越大,进而知这组数据不稳定。

  三、极差的概念

  一组数据中的最大数据与最小数据的差叫做极差,即极差=最大值-最小值。极差反映了一组数据的变化范围。

  四、方差的概念

  方差是各个数据与*均数之差的*方和的*均数。


八年级上册数学重要的知识3篇(扩展3)

——八年级下册数学重要的知识3篇

八年级下册数学重要的知识1

  三、矩形

  1、矩形的定义

  有一个角是直角的*行四边形叫做矩形。

  2、矩形的性质

  (1)矩形的对边*行且相等

  (2)矩形的四个角都是直角

  (3)矩形的对角线相等且互相*分

  (4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。

  3、矩形的判定

  (1)定义:有一个角是直角的*行四边形是矩形

  (2)定理1:有三个角是直角的四边形是矩形

  (3)定理2:对角线相等的*行四边形是矩形

  4、矩形的面积 S矩形=长×宽=ab

  四、菱形

  1、菱形的定义

  有一组邻边相等的*行四边形叫做菱形

  2、菱形的性质

  (1)菱形的四条边相等,对边*行

  (2)菱形的相邻的角互补,对角相等

  (3)菱形的对角线互相垂直*分,并且每一条对角线*分一组对角

  (4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的.直线。

  3、菱形的判定

  (1)定义:有一组邻边相等的*行四边形是菱形

  (2)定理1:四边都相等的四边形是菱形

  (3)定理2:对角线互相垂直的*行四边形是菱形

  4、菱形的面积

  S菱形=底边长×高=两条对角线乘积的一半

八年级下册数学重要的知识2

  数据的整理与初步处理

  1、*均数=总量÷总份数。数据的*均数只有一个。

  一般说来,n个数 、 、…、 的*均数为 =1n(x1+x2+…xn)

  一般说来,如果n个数据中,x1出现f1次,x2出现f2次,xk出现fk次,且f1+f2+… +fk=n则这n个数的*均数可表示为x=x1f1+x2f2+…xkfkn。其中fin是xi的权重(i=1,2…k)。

  加权*均数是分析数据的又一工具。当考虑不同权重时,决策者的结论就有可能随之改变。

  2、将一组数据按由小到大(或由大到小)的顺序排列(即使有相等的数据也要全部参加排列),如果数据的个数是奇数,那么中位数就是中间的那个数据。如果数据的个数是偶数,那么中位数就是中间的两个数据的*均数。一组数据的中位数只有一个,它可能是这组数据中的一个数据,也可能不是这组数据中的数据.

  3、一组数据中出现的次数最多的数据就是众数。一组数据可以有不止一个众数,也可以没有众数(当某一组数据中所有数据出现的次数都相同时,这组数据就没有众数).

  4、一组数据中的最大值减去最小值就是极差:极差=最大值-最小值

  5、我们通常用 表示一组数据的方差,用 表示一组数据的*均数, 、 、…、 表示各个原始数据.则

  ( *方单位)

  求方差的方法:先求*均数,再求偏差,然后求偏差的*方和,最后再*均数

  6、求出的方差再开*方,这就是标准差。

  7、*均数、极差、方差、标准差的变化规律

  一组数据同时加上或减去一个数,极差不变,*均数加上或减去这个数,方差不变,标准差不变

  一组数据同时乘以或除以一个数,极差和*均数都乘以或除以这个数,方差乘以或除以该数的*方,标准差乘以或除以这个数。

  一组数据同时乘以一个数a,然后在加上一个数b,极差乘以或除以这个数a,*均数乘以或除以这个数a,再加上b,方差乘以a的*方,标准差乘以|a|. (加减的数都不为0)


八年级上册数学重要的知识3篇(扩展4)

——八年级下册数学勾股定理的知识点3篇

八年级下册数学勾股定理的知识点1

  勾股定理

  在任何一个直角三角形(Rt△)中(等腰直角三角形也算在内),两条直角边的长度的*方和等于斜边长度的*方,这就叫做勾股定理。即勾的长度的*方加股的长度的*方等于弦的长度的*方。[1]如果用a,b,c分别表示直角三角形的两条直角边和斜边,那么a+b=c.

  简介

  勾股定理是余弦定理的一个特例。这个定理在*又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”)。

  他们发现勾股定理的时间都比*晚(*是最早发现这一几何宝藏的国家)。目前初二学生开始学习,教材的证明方法大多采用赵爽弦图,证明使用青朱出入图。

  勾股定理是一个基本的几何定理,是数形结合的纽带之一。

  直角三角形两直角边的*方和等于斜边的*方。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a^2+b^2=c^2。

  勾股定理内容

  直角三角形(等腰直角三角形也算在内)两直角边(即“勾”“股”短的为勾,长的为股)边长*方和等于斜边(即“弦”)边长的*方。

  也就是说设直角三角形两直角边为a和b,斜边为c,那么a的*方+b的*方=c的*方a+b=c。

  勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。

  *古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。

  推广

  1、如果将直角三角形的斜边看作二维*面上的向量,将两直角边看作在*面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的*方等于它在其所在空间一组正交基上投影长度的*方之和。

  2.勾股定理是余弦定理的特殊情况。

八年级下册数学勾股定理的知识点2

  一、勾股定理

  勾股定理:直角三角形两直角边的*方和等于斜边的*方。

  我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”。结论为:“勾三股四弦五”。

  a2+b2=c2

  2221、如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。

  2222、满足a+b=c的3个正整数a、b、c称为勾股数。(例如,3、4、5是一组勾股

  数)。利用勾股数可以构造直角三角形。

  二、*方根

  1、定义——一般地,如果一个数的*方等于a,那么这个数叫做a的*方根,也称为二次方根。也就是说,如果x2=a,那么x就叫做a的*方根。

  2、一个正数有2个*方根,它们互为相反数;0只有一个*方根,它是0本身;负数没有*方根。

  3、求一个数a的*方根的运算,叫做开*方。

  4、正数a有两个*方根,其中正的*方根,也叫做a的算术*方根。

  例如:4的*方根是±2,其中2叫做4的算术*方根,记作=2;2的*方根是±其中2的算术*方根。

  0只有一个*方根,0的*方根也叫做0的算术*方根,即

  三、立方根

  1、定义——一般地,如果一个数的`立方等于a,那么这个数叫做a的立方根,也称为三次方根。也就是说,如果x=a,那么x就叫做a的立方根,数a的立方根记作“,读作“三次根号a”。

  2、求一个数a的立方根的运算,叫做开立方。

  3、正数的立方根是正数,负数的立方根是负数,0的立方根是0。

  四、实数

  1、无限不循环小数称为无理数。

  2、有理数和无理数统称为实数。

  3、每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点都表示一个实数,实数与数轴上的点是一一对应的。

  五、近似数与有效数字

  1、例如,本册数学课本约有100千字,这里100是一个近似似数。

  2、对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。

八年级下册数学勾股定理的知识点3

  一、逆定理的内容:

  如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

  说明:

  (1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的*方和与较长边的*方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;

  (2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b。

  二、利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:

  (1)确定最大边;

  (2)算出最大边的*方与另两边的*方和;

  (3)比较最大边的*方与别两边的*方和是否相等,若相等,则说明是直角三角形。

  三、勾股数

  能够构成直角三角形的三边长的三个正整数称为勾股数。

  四、一个重要结论:

  由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。

  五、勾股定理及其逆定理的应用

  解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。

  有了上文梳理的勾股定理的逆定理知识点整理,相信大家对考试充满了信心,同时预祝大家考试取得好成绩。


八年级上册数学重要的知识3篇(扩展5)

——八年级上册数学函数课件3篇

八年级上册数学函数课件1

  教学目的:

  1.了解常量与变量的意义,能分清实例中的常量与变量;

  2.了解自变量与函数的意义,能列举函数的实例,并能写出简单的函数关系式;

  3.培养学生观察、分析、抽象、概括的能力;

  4.对学生进行相互联系、绝对与相对、运动变化的辩证唯物主义观点的教育和爱国、爱党、爱人民的教育,数学教案-函数。

  教学直点:

  函数概念的形成过程。

  教学难点:

  理解函数概念。

  教具:

  多媒体。

  教学过程:

  一、创设情境

  首先请同学们看一组境头:(微机播放今夏抗洪片段)唤起学生对今夏洪水的回忆,对学生渗透爱国、爱党、爱人民的教育。

  二、形成概念

  (一)变量与常量概念的形成过程

  1.举例、归纳

  引例1:沙市今夏7、8两个月的水位图(微机示图)

  学生观察水位随时间变化的情况,(微机示意)引出“变量”。

  引例2:汽车在公路上匀速行驶(微机示意)

  学生观察汽车匀速行驶的过程,加深对变量的认

  识,引出“常量”。

  设问:一个量变化,具体地说是它的什么在变?什么不变呢?(微机显示:下方汽车匀速行驶,上方S的值随t的值变化而变化。)

  引导学生观察发现:是量的数值变与不变。

  归纳变量与常量的定义并板书。

  2.剖析概念

  常量与变量必须存在于一个变化过程中。判断一个量是常量还是变量,需着两个方面:①看它是否在一个变化的过程中,②看它在这个变化过程中的取植情况。

  3.巩固概念

  练习一:

  1.向*静的.湖面投一石子,便会形成以落水点为圆心的一系列同心圆(微机示意)。①在这个变化过程中,有哪些变量?②若面积用S,半径用R表示,则S和R的关系是什么?;π是常量还是变量?③若周长用C,半径用R表示,C与R的关系式是什么?

  2.(见课本第92页练习1)

  学生回答后指出:常量与变量不是绝对的,而是对于一个变化过程而言的。

  (二)自变量与函数概念的形成过程

  1.举例、归纳

  (微机一屏显示两个引例)学生再次观察引例1、2两个变化过程,寻找共同之处:①一个变化过程,②两个变量,③一个量随另一个量的变化而变化。

  若两个量满足上述三个条件,就说这两个量具有函数关系。(引出课题并板书)

  设问:上述第三条是形象描述两个变量的关系,具体地说是什么意思?

  以引例2说明:(微机示意)

  设问:在S=30t中,当t=0.5时,S有没有值与它对应?有几个?

  反复设问:t=l,1.5,2,3……时呢?

  引导学生观察发现:对于变量t的每一个值,变量S都有唯一的值与它对应。所以两个变量的关系又可叙述为:对于一个变量的每一个值,另一个变量都有唯一的值与它对应。即一种对应关系。(微机出示)

  在s=30t中,s与t具有这种对应关系,就说t是自变量,S是t的函数。引出“自变量”、“函数”。

  归纳自变量与函数的定义并板书,初中数学教案《数学教案-函数》。

  2.剖析概念

  理解函数概念把握三点:①一个变化过程,②两个变量,③一种对应关系。判断两个量是否具有函数关系也以这三点为依据。

  3.巩固概念

  练习二:

  l)某地某天气温如图:(微机示图)气温与时间具有函数关系吗?

  学生回答后指出这里函数关系是用图象给出的。

  2)宜昌市某旅游公司近几年接待游客人数如表:(微机示表)游客人数与时间具有函数关系吗?学生回答后指出这里函数关系是用表格给出的。

  3)在S=?d中,S与R具有函数关系吗?C=ZπR中,C与R呢?(微机显示变化过程)学生回答后指出这里函数关系是用数学式子结出的。

  4)师生共同列举函数关系的例子。

  三、例题示范

  (微机出示例1,并演示篱笆围成矩形的过程。)

  指导:1.篱笆的长等于矩形的周长;2.S与1的关系式,即用1的代数式表示S;3.表示矩形的面积,需先表示矩形一组邻边的长。

  解题过程略。

  变式练习:

  用60m的篱笆围成矩形,使矩形一边靠墙,另三边用篱笆围成,(微机示意)

  1.写出矩形面积s(m?)与*行于墙的一边长l(m)的关系式;

  2.写出矩形面积s(m?)与垂直于墙的一边长l(m)的关系式。并指出两式中的常量与变量,函数与自变量。

  四、反馈练习(微机示题)

  五、归纳小结

  1.四个概念:常量与变量,函数与自变量。

  2.两个注意:①判断常量与变量看两个方面。②理解函数概念把握三点。

  六、布置作业

  1.必做题:课本第95页,练习1、2.

  2.思考题:

  ①在 y= 2x+l中,y是x的函数吗??=x中,y是X的函数吗?

  ②引例2的s=30t中,t可以取不同的数值,但t可以取任意数值吗?

  教案设计说明

  根据本节内容的特点——抽象、难懂的概念深。

  我按以下思路设计本课:坚持以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认识规律。教学过程特突出以下构想:

  一、真景再现,引人入胜

  上课后,首先播放一组动人的抗洪镜头,把学生分散的思维一下子聚拢过来,学生情绪、课堂气氛调控到最佳状态,为新课的开展创设良好的教学氛围。因为它真实、贴近学生的生活,所以唤起他们对今夏所遭受的那场特大洪水的回忆,教师有机地对学生渗透爱国、爱党、爱人民的教育

  二、过程凸现,紧扣重点

  函数概念的形咸过程是本节的重点,所以本节突出概念形成过程的教学,把过程分为三个阶段:归纳、剖析与巩固。第一阶段里举学生熟悉的、形象生动的例子,引导学生观察、分析尔后归纳。第二阶段里帮助学生把握概念的本质特征,提出注意问题。第三阶段里引导学生运用概念并及时反馈。同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。引导学生从运动、变化的角度看问题时,向学生渗透辩证唯物主义观点的教育。

  三、动态显现,化难为易

  函数概念的抽象性是常规教学手段无法突出的,为了扫除学生思维上的障碍,本节充分发挥多媒体的声、像、动画特征,使抽象的问题形象化,静态方式的动态化,直观、深刻地揭示函数概念的本质,突破本节的难点。同时教学活动中有声、有色、有动感的画面,不仅叩开学生思维之门,也打开他们的心灵之窗,使他们在欣赏、享受中,在美的熏陶中主动的、轻松愉快的获得新知。

  四、例子展现,多方渗透

  为了使抽象的函数概念具体化,通俗易懂,本节列举了大量的生活中的例子和其他学科中的例子,培养学生的发散思维、加强学科间的渗透,知识问的联系,也增强学生学数学、的意识。


八年级上册数学重要的知识3篇(扩展6)

——北师版八年级上册数学知识点整理3篇

北师版八年级上册数学知识点整理1

  函数及其相关概念

  1、变量与常量

  在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

  2、函数解析式

  用来表示函数关系的数学式子叫做函数解析式或函数关系式。

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

  3、函数的三种表示法及其优缺点

  (1)解析法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图像法

  用图像表示函数关系的方法叫做图像法。

  4、由函数解析式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标*面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用*滑的曲线连接起来。

北师版八年级上册数学知识点整理2

  四边形

  *行四边形定义:有两组对边分别*行的四边形叫做*行四边形。

  *行四边形的性质:*行四边形的对边相等;*行四边形的对角相等。*行四边形的对角线互相*分。

  *行四边形的判定

  1.两组对边分别相等的四边形是*行四边形

  2.对角线互相*分的四边形是*行四边形;

  3.两组对角分别相等的四边形是*行四边形;

  4.一组对边*行且相等的四边形是*行四边形。

  三角形的中位线*行于三角形的"第三边,且等于第三边的一半。

  直角三角形斜边上的中线等于斜边的一半。

  矩形的定义:有一个角是直角的*行四边形。

  矩形的性质:矩形的四个角都是直角;矩形的对角线*分且相等。AC=BD

  矩形判定定理:

  1.有一个角是直角的*行四边形叫做矩形。

  2.对角线相等的*行四边形是矩形。

  3.有三个角是直角的四边形是矩形。

  菱形的定义:邻边相等的*行四边形。

  菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线*分一组对角。

  菱形的判定定理:

  1.一组邻边相等的*行四边形是菱形。

  2.对角线互相垂直的*行四边形是菱形。

  3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)

  正方形定义:一个角是直角的菱形或邻边相等的矩形。

  正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

  正方形判定定理:

  1.邻边相等的矩形是正方形。

  2.有一个角是直角的菱形是正方形。

推荐访问:数学 知识 八年级上册 八年级上册数学重要知识3篇 八年级上册数学重要的知识1 八年级上册数学重要的知识100字

Top