卓迈文档网
当前位置 首页 >专题范文 > 公文范文 >

2023年三角形面积教学设计,菁选3篇【通用文档】

发布时间:2023-02-16 16:35:05 来源:网友投稿

三角形的面积优秀教学设计1  教学内容:三角形的面积第84-85页  教学目标:  1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。  2、通过操作和对图形的观察、比较,发展学生的空下面是小编为大家整理的2023年三角形面积教学设计,菁选3篇【通用文档】,供大家参考。

2023年三角形面积教学设计,菁选3篇【通用文档】

三角形的面积优秀教学设计1

  教学内容:三角形的面积第84-85页

  教学目标:

  1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

  2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  3、培养学生的创新意识和合作精神。

  教学重点:

  理解三角形面积计算公式,正确计算三角形的面积。

  教学难点:

  在转化中发现内在联系及推导说理。

  学具准备:

  每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个*行四边形。红领巾等。

  教学过程

  复习导入:

  1、复习:想一想,*行四边形的面积怎样计算?这个公式是怎么推导出来的?

  指名说一说,师可再现推导过程。

  2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。

  二、探究三角形的面积公式.

  1.启发提问:你能否依照*行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  2.用两个完全一样的直角三角形拼.

  (1)教师参与学生拼摆,个别加以指导

  (2)演示课件:拼摆图形

  (3)讨论

  ①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和*行四边形,每个直角三角形的面积与拼成的*行四边形的面积有什么关系?

  3.用两个完全一样的锐角三角形拼.

  (1)组织学生利用手里的学具试拼.(指名演示)

  (2)演示课件:拼摆图形(突出旋转、*移)

  教师提问:每个三角形的面积与拼成的*行四边形的面积有什么关系?

  4.用两个完全一样的钝角三角形来拼.

  (1)由学生独立完成.

  (2)演示课件:拼摆图形

  5.讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的*行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  6、引导学生明确:

  ①两个完全一样的三角形都可以拼成一个*行四边形。

  ②每个三角形的面积等于拼成的*行四边形面积的一半。(同时板书)

  ③这个*行四边形的底等于三角形的底。(同时板书)

  ④这个*行四边形的高等于三角形的高。(同时板书)

  (3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

  板书:三角形面积=底×高÷2

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  7.教学例1

  红领巾的底是100cm,高33cm,它的面积是多少*方厘米?

  1.由学生独立解答.

  2.订正答案(教师板书)

  三、总结:

  (一)总结这一节课的收获,并提出自己的问题.

  (二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?

  四、反馈练习

  计算下面每个三角形的面积.

  1.底是4.2米,高是2米;

  2.底是3分米,高是1.3分米;

  (三)判断

  1、一个三角形的底和高是4厘米,它的面积就是16*方厘米。()

2、等底等高的两个三角形,面积一定相等。()

  3、两个三角形一定可以拼成一个*行四边形。()

  4、三角形的底是3分米,高是20厘米,它的面积是30*方厘米。()

  板书设计

  三角形的面积

  *行四边形的面积=底×高

  三角形面积=拼成的*行四边形的一半,100×33÷2=1650(cm)

  三角形面积=底×高÷2

  S=ah÷2

三角形的面积优秀教学设计2

  教材简析:

  “三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的*行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。

  教学内容:

  苏教版标准实验教科书《数学》五年级上册P15~P16的内容,三角形的面积。

  教学目标:

  1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;

  2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;

  3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重、难点:

  重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。

  教、学具准备:

  CAI课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。

  教学过程:

  一、创设情境、导入新课

  1、提出问题。

  师:(出示一条红领巾)同学们,这是一条红领巾。它是什么形状的?那你们会计算三角形的面积吗?

  2、揭示课题。

  师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)

  二、操作“转化”,推导公式

  1、寻找思路。

  师:是的,我们还不会计算三角形的面积。那同学们想一想,开始我们同样不会计算*行四边形的面积,后来我们通过什么方法推导出了*行四边形的面积计算公式的呢?

  师:对,我们用“割补”的方法把*行四边形“转化”(板书:转化)成了一个长方形,这样推导出了*行四边形的面积计算公式。那同学们,我们能不能把三角形也“转化”成我们已经学过的图形,从而推导出三角形的面积计算公式呢?

  师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?

  [应变预设:同学们根据已有的经验,一般会认为可以用这种方法,教师可以选择一种方法实际“割补”,让学生明白这种方法不好,需要寻找更好的方法。]

  2、动手“转化”。

  师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。

  小组合作拼组图形,教师巡视指导。

  [应变预设:可能有些同学不会拼组,教师可指导他们用旋转、*移等方法,把两个完全一样的三角形拼成一个*行四边形或一个长方形。]

  师:拼好了吗?用这种拼一拼的方法能不能把三角形“转化”成已经学过的图形呢?谁来说一说,你们用这种方法把三角形“转化”成了什么图形?

  [应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]

  师:同学们,为什么有些小组拼成了一个*行四边形,有的小组却拼成了一个长方形呢?你们想想,这是什么原因呢?

  [评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]

  3、尝试计算。

  师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个*行四边形或一个长方形。现在请同学们看图1。

  师:这个*行四边形就是由两个完全相同的三角形拼成的,它的底和高分别是多少?那么,其中一个三角形的底和高又分别是多少呢?

  [评析:引导学生说出拼成的*行四边形和原来的三角形等底等高,为推导三角形的面积计算公式作铺垫。]

  师:知道了*行四边形的底和高,你们能求出所拼成的*行四边形的面积吗?算一算吧。

  师:算完了吗?它的面积是多大?

  师:我们知道,这个*行四边形是用两个完全一样的三角形拼成的,*行四边形的面积是20*方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。

  [应变预设:在设法求三角形的面积时,可能有部分同学不明白三角形的面积和*行四边形面积之间的关系,不会计算。这时教师应引导学生明确每个三角形的面积是拼成的*行四边形面积的一半,计算三角形的面积可用*行四边形的面积除以2得出。]

  师:同学们太了不起了,开动脑筋,已经算出了这个绿色三角形的面积。

  师:现在请同学们看屏幕,(课件出示,如下图)你们会计算屏幕上这个蓝色三角形(底3cm,高2cm)的面积吗?算一算。

  [应变预设:学生可能不会计算,教师可以引导学生观察,图中的虚线三角形,和蓝色三角形是完全一样的,它们也拼成了一个*行四边形。使学生明确3×2是这个*行四边形的面积,求这个三角形的面积还得除以2。]

  师:同学们,你们太棒了!又计算出了一个三角形的面积。再看屏幕,(课件出示,如下图)你们还能计算这个三角形(底6cm,高4cm)的面积吗?

  [评析:由清晰的由两个完全相同的三角形拼成的*行四边形,到由一实一虚的两个完全相同的三角形拼成的*行四边形,再到一个独立的三角形,面积计算逐步深入,层层推进,引导学生经历了由具象到抽象的过程,思维含量非常丰富。]

  4、推导公式。

  师:同学们,刚才大家已经尝试着求出了三个三角形的面积,大家都算得很好。那么现在你们能把三角形的面积计算公式写下来吗?先写一写,同桌同学再商量商量吧。

  [应变预设:大多数的学生可能会说出“三角形的面积=底×高÷2”。教师应给以充分的肯定:你们推导出了三角形面积的计算公式!再引导学生说出推导的过程。]

  5、理解公式。

  师:同学们,老师有点不明白,为什么你们写这个公式时用三角形的底乘高呢?“底×高”表示什么意思呢?为什么还要“÷2”呢?

  [评析:通过请学生帮助老师解困惑,加深学生对三角形面积计算公式含义的理解:“底×高”表示用两个完全一样的三角形拼成的*行四边形的面积;因为三角形的面积是拼成*行四边形面积的一半,所以要“÷2”。这样既突破了教学难点,更加深了

  学生对三角形面积计算公式的理解。]

  6、用字母表示三角形的面积公式。

  师:同学们,如果用a表示三角形的底,h表示三角形的高,S表示三角形的面积,你们会不会用字母表示三角形的面积公式呢?请写一写吧。

  [评析:拼一拼、算一算、说一说、写一写……不知不觉中,同学们自己推导出了三角形的面积计算公式。学生自然地成为了学习的主人。]

  师:同学们,你们知道吗?今天我们一动手起推导出的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看大屏幕。(课件出示如下图,课本P85页的数学常识。)

  [评析:这样表面是介绍数学常识,但实际渗透了爱国思想教育。]

  三、应用公式,解决问题

  师:同学们,我们已经推导出了三角形的面积计算公式,现在我们就用三角形的面积计算公式解决一些实际的问题。这是刚才看到的那条红领巾,同学们,你们知道怎样才能求出做一条这样的红领巾要用多少红布吗?

  师:对,要求做一条红领巾要用多少红布,实际是求这条红领巾的面积是多少?而要求这条红领巾的面积是多少?必须了解哪些数据呢?

  师:那就请大家动手量一量它的底和高吧。

  [评析:这里并没有直接给出红领巾的底和高,需要学生共同合作实际测量,培养了学生解决实际问题的能力。]

  师:量完了吗?请大家算一算,看看做这样一条红领巾到底需要多少红布?

  [应变预设:指导学生运用公式进行正确的计算,展示学生的算式,集体订正。]

  四、联系生活,适当拓展

  师:同学们,你们认识这些道路交通警示标志吗?(课件出示下面这些道路交通警示标志。)知道它们的.具体含义吗?

  师:交通标志对于维护交通安全有着重要的意义和作用。同学们,这些交通标志是什么形状的?

  师:对,它们都是三角形的。(课件出示其中一个三角形标志的底和高,如下图)请大家算一算,这个标志牌(底9dm,高7dm)的面积大约是多少?

  [应变预设:指导运用公式进行正确的计算,,然后集体订正。]

  师:同学们,你们还能算出这三个三角形的面积吗?(课件出示如下图1:底3厘米,高4厘米;图2:底4厘米,高1。5厘米;图3:底2。5厘米,高2。8厘米)看谁算得又对又快!

  四、全课总结,反思体验

  教师:这节课你们学习了什么?有哪些收获?

  [总评:这节课教师注重从学生已有的知识经验出发,并引导学生将“转化”的思想迁移到新知识的学习中,动手操作推导出三角形的面积公式,亲身经历了数学知识的形成过程,增强了学生学习数学的兴趣。整一节课,教师尽量把时间和空间让给学生,组织他们动手实践,引导他们自主探索,参与他们的合作交流,使学生真正成为了学习的主人。]

三角形的面积优秀教学设计3

  一、教学目标

  1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。

  2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。

  3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

  二、教材分析

  三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、*行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了*行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。

  三、学校及学生状况分析

  我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的程度等也会出现差异。

  四、教学设计

  (一)由谈话导入新课

  师:我们已经学过长方形、正方形、*行四边形面积的计算公式。还记得它们的面积公式吗?(一人回答)还记得正方形面积公式是怎样推导出来的吗?*行四边形面积呢?

  师:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。

  师:谁知道三角形面积的计算公式?老师调查一下:知道三角形面积计算公式的举手;不知道三角形面积计算公式的举手;不但知道公式,而且还知道怎样推导出来的举手。

  师:今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程。

  [板书课题:三角形面积]

  (二)探究活动。

  师:根据你们前面的学习经验,谁能说一说应怎样去探究三角形的面积?[板书:转化]

  师:下面我们将按小组来探究三角形面积的计算公式。

  (教师介绍学具袋中的学具,并出示探究活动的目标、建议与思考,见下表)

  (学生在探究活动时,教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)

  师:谁愿意展示自己的探究成果?在同学介绍自己的探究成果时,其他同学要注意听,以便予以补充(交流过程注意引发学生间的争论)。

  生1:我们是直接用两个完全一样的三角形拼成一个*行四边形,然后推导出三角形的面积计算公式。

  生2:我们小组是用一个三角形折成长方形后推导出计算公式的。

  生3:我们是将一个三角形用割补法进行推导的。

  ……

  师:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,那么,谁能概括出三角形面积计算的公式呢?

  生:三角形的面积=底×高÷2s=a×h÷2(在学生叙述时,教师板书)

  师:刚才这个同学概括了三角形的面积计算公式,请同学们再用自己喜欢语言再来说一说三角形面积公式的意义。

  师:不论同学们用一个三角形、或者两个三角形,还是用拼摆、或者用割补的方法,都是在想方设法将新知识转化为旧知识,这是推导三角形面积计算公式的重要方法?

  师:下面我们运用三角形的面积计算公式解决一些具体的问题。

  (巩固练习略)

  五、教学反思

  本节课是围绕着“通过学生发现三角形面积与已学图形面积的联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习”这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子。如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。

  这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了“再创造”,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。

  六、案例点评

  本节课是在学生已掌握了长方形、正方形、*行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。

  教师设计让学生自主动手操作,目的是以“动”促“思”,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。

  通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。

推荐访问:角形 教学设计 面积 三角形面积教学设计 菁选3篇 三角形的面积优秀教学设计1 三角形的面积优秀教学设计 三角形的面积优秀教学设计表格 《三角形的面积》教学设计

Top