卓迈文档网
当前位置 首页 >专题范文 > 公文范文 >

2023七年级数学教学设计【10篇】【精选推荐】

发布时间:2023-01-08 19:40:32 来源:网友投稿

七年级数学教学设计1  教学目标:  1、使学生在现实情境中理解有理数加法的意义  2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。[]  3、在教学中适当渗透分类讨论下面是小编为大家整理的2023七年级数学教学设计【10篇】【精选推荐】,供大家参考。

2023七年级数学教学设计【10篇】【精选推荐】

七年级数学教学设计1

  教学目标:

  1、使学生在现实情境中理解有理数加法的意义

  2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。[]

  3、在教学中适当渗透分类讨论思想。

  重点:有理数的加法法则

  重点:异号两数相加的法则

  教学过程:

  一、讲授新课

  1、同号两数相加的法则

  问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作—5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?

  学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)

  教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?

  学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(—5)+(—3)=—8(m)

  师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。

  2、异号两数相加的法则

  教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?

  学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(—3)=2(m)

  师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

  3、互为相反数的两个数相加得零。

  教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?

  学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。

  师生共同归纳出:互为相反数的两个数相加得零

  教师:你能用加法法则来解释这个法则吗?

  学生回答:可用异号两数相加的法则来解释。

  一般地,还有一个数同0相加,仍得这个数。

  二、巩固知识

  课本P18例1,例2、课本P118练习1、2题

  三、总结

  运算的关键:先分类,再按法则运算;

  运算的步骤:先确定符号,再计算绝对值。

  注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。

  四、布置作业

  课本P24习题1.3第1、7题。

七年级数学教学设计2

  一、教学目标设计

  [知识与技能目标]

  1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

  2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

  [过程与方法目标]

  限度的发挥学生的主体参与,让学生在教师的引导启发,师生的交流与探索下,轻松愉快地学到新知识。

  [情感态度与价值观]

  借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想,让学生采取自主探索,合作交流的学习方式。

  二、教材解读

  借助数轴引出对绝对值的概念,并通过计算、观察、交流、发现绝对值的性质特征,利用绝对值来比较两个负数的大小。

  让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和字母,多鼓励学生通过观察、归纳、验证。

  三、教学过程设计与分析

  一、情境导入

  [课件展示,激趣感知]

  博物馆、农场到学校与学校到博物馆农场的距离的关系。

  [媒体展示课件,认知生活中的有些问题]

  不考虑相反意义,只考虑具体数值。

  [创设情境,实例导入]利用动画展示,让学生在有趣的图画中感受绝对值激发学生的兴趣。

  实物的形象符合学生心理,学生兴趣很高,踊跃发言,95%的学生能顺利的解决问题。

  师生互动

  [提出问题,引发讨论]

  1、引导学生得出绝对值定义及表示方法。

  2、同桌之间互相举例。

  [展示:启发学生交流了解绝对值]

  归纳绝对值概念,教师指出表示方法。

  [师生互动、探索新知]:学生根据情境感知初步认知绝对值,并通过对其概念的理解求解一个数的绝对值。

  同桌之间举例,效果良好,体现了“自主——协作”学习

  阅读课文,互动探索

  求解各数的绝对值后讨论

  1、想一想互为相反数的两个数的绝对值有什么关系?学生举例,并进行观察、比较、归纳。

  2、议一议一个数的绝对值与这个数有什么关系?小组讨论、交流教师引导学生用自己的语言描述所得结论教师质疑:一个数的绝对值是否为负数?学生通过分析理解绝对值的内在涵义。

  阅读课文:从各数的绝对值归纳绝对值的代数意义。

  [阅读课文:“想一想]提出问题,引起学生的思考。

  [阅读课文:“议一议]

  学生分析各类数的绝对值与本身的关系,并对教师的质疑进行深究。

  [趣引妙答,思路点拨]通过学生举例思考,对互为相反数的两个数的绝对值进行观察对比,从而得到它们的关系。

  学生从“特殊——一般”分类归纳绝对值的代数意义,并通过归纳总结出绝对值的内在涵义,体现学生的主体性。

  积极调动学生的思维,使学生在协商、讨论中将问题逐渐明朗化、具体化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理解。

  3、做一做

  [激趣探知]

  教师出示过关题目

  学生通过自主探索最终找到两个负数比较大小的方法,绝对值大的反而小。

  师生归纳两页数比较大小的两种方法。

  [探索用绝对值比较两负数的方法]

  体验概念的形式过程

  旧知识的引用,让学生在轻松愉快的环境中获取新知,从已有知识逐渐到新知识,不但可激发学生的兴趣,并且培养学生的探索精神,同时分解了本节的难点。

  从旧知识层层引入,学生兴趣十足,提高了教学效果,突破了难点,学生接受轻而易举。

  巩固练习

  [绝对值比较两负数大小的运用]

  情境:比较下列每组数的大小。

  [媒体展示,出示习题]:

  运用绝对值比较负数大小。

  [变成训练,巩固反馈]

  继续对绝对值比较负数大小进行巩固练习。

  由以上练习层层深入,学生解决问题的能力大大提高,并且印象深刻。

  知识延伸

  [学生探究,教师点拨]

  [媒体展示]

  绝对值定义,代数意义及内在涵义的的灵活应用。

  [知识延伸,目标升华]

  充分发挥学生的自主探索能力,使学生能够深入、细致的理解知识点。

  学生能够互相评点,共同探索,既发展了自主学习能力,又强化了协作精神。

  七、教学板书设计

  绝对值

  概念正数的绝对值是它本身

  绝对值代数意义0的绝对值是0非负数

  表示方法| |负数的绝对值是它的相反数

  如:|—2|=2 |+3|=3绝对值最小的数是0

七年级数学教学设计3

  学习目标:

  了解*移的概念,会进 行点的*移,理解*移的性质,能解决简单的*移问题

  重点:

  *移的概念和作图方法。

  难点:

  *移的作图。

  一、预习导学

  预习课本P27—P29,并完成以下练习

  1、观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?

  2如何在一张半透明的纸上,画出一排形状和大小如图的雪人?

  2、在*面内,将一个图形沿某个方向___一定的距离,这样的图形运动称为*移,*移改变的是图形的_____。*移不改变图形的____和____。

  3、图形的*移是由_____和_____决定的。

  4、经过*移所得的图形与原来的图形的对应线段_______,对应角____,对应点所连的线段____。

  5、如图1,△ABC*移到△DEF,图中相等的线段有_____________,相等的角有____________,*行的线段有______________。

  6、把一个△ABC沿东南方向*移3cm,则AB边上的中点P沿___方向*移了 __cm。

  7、如图,△ABC是由四个形状大小相同的三角形拼成的,则可以看成是△ADF*移得到的小三角形是___________。

  8、如图,△DEF是由△ABC先向右*移__格,再向___*移___格而得到的。

  11、如图,有一条小船,若把小船*移,使点A*移到点B,请你在图中画出*移后的小船。

  12、如图,*移三角形ABC,使点A运动到A`,画出*移后的三角形A`B`C`。

  二、课堂学习研讨

  (一)*移的概念

  1、一个图形________________________叫做*移变换,简称*移。

  2、下列各组图形中,可以经过*移变换由一个图形得到另一个图形的是( )

  3、如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC*移得到的是( )

  A △OCD B △OAB

  C △OAF D △OEF

  (二)*移的性质

  1、*移后的图形与原图形_____、______完全相同,新图形中的每一个点,都是由____________ _______移动后得到的,这两个点是对应点,连接各组对应点的线段______且________或__________,对应角_______。

  2、如图,将梯形ABCD的腰AB沿AD*移,*移长度等于AD的长,则下列说法不正确的是( )

  A AB∥DE且AB=DE B ∠DEC=∠B

  C AD∥EC且AD=EC D BC=AD+EC

  3、△ABC沿B C的方向*移到△DEF的位置,(1)若∠B=260,∠F=740,则∠1=_______,∠2=______,∠A=_______,∠D=______

  (2)若AB=4c m,AC=5cm,BC=4。5 cm,EC=3。5cm,则*移的距离等于________,DF=_______,CF=_________。

  ( 三)*移作图

  1、△ABC在网格中如图所示,请根据下列提示作图

  (1)向上*移2个单位长度。

  (2) 再向右移3个单位长度。

  2、已知三角形ABC、点D,D为A的对应点。过点D作三角形ABC*移后的 图形。

  三、随堂小测

  (一)选择题

  1、下列哪个图形是由左图*移得到的( )

  2、如图所示,△FDE经过怎样的* 移可得到△ABC。( )

  A、沿射线EC的方向移动DB长;

  B、B沿射线EC的方向移动CD长

  C、沿射线BD的方向移动BD长;

  D、D。沿射线BD的方向移动DC长

  3、下列四组图形中,有一组中的两个图形经过*移其中一个能得到另一个,这组图形是( )

  4、如图所示,△DEF经过*移可以得到△ABC,那么∠C

  的对应角和ED的对应边分别是( )

  A、∠F,AC B。∠BOD,BA; C。∠F,BA D。∠BOD,AC

  5、在*移过程中,对应线段( )

  A、互相*行且相等; B。互相垂直且相等 C。互相*行(或在同一条直线上)且相等

  (二)填空题

  1、在*移 过程中,*移后的图形与原来的图形________和_________都相同,因此对应线段和对应角都________。

  2、如图所示,*移△ABC可得到△DEF,如果∠A=50°,∠C=60°, 那么∠E=____度,∠EDF=_______度,∠F=______度,∠DOB=_______度。

  (三)解答题

  1、如图所示,将△ABC*移,可以得到△DEF,点B的对应点为点E,请画出点A的对应点D、点C的对应点F的位置。

  2、如图所示,请将图中的“蘑菇”向左*移6个格,再向下*移2个格。

  3、如图所示,画出*行四边形ABCD向上*移1厘米后的图形。

  4、如图,将△ABC沿水*方向*移3cm。

  5、直角△ABC中,AC=3c m,BC=4cm,AB=5cm,将△ABC沿CB方向*移3cm,则边AB所经过的*面面积为____cm2。

  6、一个长方形竹园长20米,宽12米,竹园有一条横向宽度都为 1。5米的小径(如图)。你能求出这个竹园中竹子的种植面积吗(除去小径的面积)?请说明理由。

七年级数学教学设计4

  一、学生情况分析

  本学期担任七年级(1)班数学,该班共有学生49人。七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,七年级学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应七年级教学的新要求,要重视对学生进行记法指导。

  二、教材及课标分析

  第一章 有理数

  1.通过实际例子,感受引入负数的必要性.会用正负数表示实际问题中的数量.

  2.理解有理数的意义,能用数轴上的点表示有理数.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小.通过上述内容的学习,体会从数与形两方面考虑问题的方法.

  3.掌握有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算.能运用有理数的运算解决简单的问题.

  4.理解乘方的意义,会进行乘方的运算及简单的混合运算(以三步为主).通过实例进一步感受大数,并能用科学记数法表示.了解近似数与有效数字的概念.

  第二章 一元一次方程

  1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步.

  2.通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法.

  3.了解解方程的基本目标(使方程逐步转化为x=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想.

  4.能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想.

  5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力.

  第三章 图形认识初步

  1.通过大量的实例,体验、感受和认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特征,能识别这些几何体,初步了解从具体事物中抽象出几何概念的方法,以及特殊与一般的辩证关系.

  2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的*面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象和制作立体模型;通过丰富的实例,进一步认识点、线、面、体,理解它们之间的关系.在*面图形和立体图形相互转换的过程中,初步建立空间观念,发展几何直觉.

  3.进一步认识直线、射线、线段的概念,掌握它们的表示方法;结合实例,了解两点确定一条直线和两点之间线段最短的性质,理解两点之间的距离的含义;会比较线段的大小,理解线段的和差及线段的中点的概念,会画一条线段等于已知线段.

  4.通过丰富的实例,进一步认识角,理解角的两种描述方法,掌握角的表示方法;会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,并会进行简单的换算;了解角的*分线的概念,了解余角和补角的概念,知道“等角的补角相等”“等角的余角相等”的性质质,会画一个角等于已知角(尺规作图).

  5.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.

  6.初步体验图形是描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.

  7.激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.

  第四章 数据的收集与整理

  1.了解通过全面调查和抽样调查收集数据的方法;会设计简单的调查问卷收集数据;能根据问题查找有关资料,获得数据信息.

  2.初步感受抽样的必要性,初步体会用样本估计总体的思想.

  3.掌握划记法,会用表格整理数据.

  4.进一步体会条形图、扇形图和折线图在描述数据中的作用.

  5.能用计算器处理简单统计数据,进一步体会计算器处理运算的优越性.

  6.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的`联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.

  三、具体措施

  1、认真学习教育教学理论,落实课标理念,让学生通过观察、思考、探究、讨论、归纳,主动地进行学习。

  2、把握好与前两个阶段的衔接,把握好教学要求,不要随意拨高。

  3、突出方程这个重点内容,将有关式的预备知识融于讨论方程的过程中;突出列方程,结合实际问题讨论解方程;通过加强探究性,培养分析解决问题的能力、创新精神和实践意识;重视数学思想方法的渗透,关注数学文化。

  4、把握好“图形初步认识”的有关内容的要求。充分利用现实世界中的实物原型进行教学,展示丰富多彩的几何世界;强调学生的动手操作和主动参与,让他们在观察、操作、想象、交流等活中认识图形,发展空间观念;注重概念间的联系,在对比中加深理解,重视几何语言的培养和训练;利用好选学内容。

  5、适当加强练习,加深对基本知识和基本技能的掌握,但不一味追求练习的数量。

  6、强调在统计活动的过程中建立统计观念,改进学生的学习方式。突出统计思想;选择真实素材进行教学;

  7、重视现代信息技术的运用,着重利用计算器,丰富学习资源。

  8、搞好教学六认真,注重对学生进行学法指导。读法指导、听法指导、思法指【您现在访问的是数学教学计划,请勿转载或建立镜像】导、写法指导、记法指导。

  【结语】:以上就是关于《第一学期七年级数学教学计划》的具体内容,谢谢查阅。

七年级数学教学设计5

  一、教学目的:

  1.知识与技能:

  理解相交线、垂线的定义,在具体的情景中了解同位角、内错角和同旁内角的定义,能找到图形中的同位角、内错角和同旁内角以及对顶角。

  2.过程与方法:

  能够通过观察推断等方法准确找到图形中的邻补角、对顶角,能够进一步发展空间观念。

  3.情感态度价值观:

  培养识图能力,发展空间想象能力,和逻辑推理能力。

  二、教学重难点

  1.重点:邻补角、对顶角的概念,对顶角的性质与应用,以及对同位角、内错角和同旁内角的概念和应用的理解。

  2.难点:理解对顶角相等的性质的探索。

  三、教学过程

  1.创设情景:通过多媒体展示自然界中的相交线的图形,和同学们探讨自然界中还存在哪些相交线的图形,帮助同学们理解数学和生活的紧密关系。

  2.尝试活动:让同学们提前准备道具,在课上用剪刀剪纸,并且提出问题,在剪纸过程中如果把剪刀看成两条线,则在剪纸的过程中剪刀发生了哪些变化?

  3.抽象图形:抽象出具体的图形,和同学们一起给出相交线的定义。

  4.尝试探究:任意画两条相交的直线,形成四个角,让同学们把形成的四个角两两一组结对,一共能有几种,并且提问角一和角二有什么样的位置关系?角一和角三呢?

  5.尝试反馈:在和同学们的探讨中和同学们一起给出邻补角和对顶角的定义。

  6.在相交线的模型中,如果两条相交线形成的四个角为直角,介绍垂线的定义。

  7.进一步研究:在研究了一条直线与另一条直线之间的关系之后进一步研究一条直线与两条直线分别相交时,讨论没有公共顶点的两个角之间的关系,理解同位角、内错角和同旁内角的定义。

  四、总结拓展

  引导同学们一起进行总结本节课学习的内容,并强调对顶角的概念和性质的理解。

  五、布置作业

  第七页,第二题,第六题,第十题

七年级数学教学设计6

  一、变式教育的优点

  (一)让学生更理解数学。如前文所说数学教学的目的是提高学生逻辑思维能力和思考能力。变式指在数学本质基础上通过其他方式和方法呈现数学内容。如一种数学题目在不同试卷上可以用不同方法表示,也可以通过不同方法解决。虽然解决一道数学题目的方法很多,但是题目考验学生能力的内容是一致的,即在本质上解答问题的思路是一致的,并且使用的数学公式是不变的。通过变式教学方法可以让同学更了解数学题目,即不停留于一种题型,让学生在了解公式的基础上灵活解决同类型题目。有句话一直牢记在我心中:要活学并活用。变式教学就是教会我们活用的技巧,让我们更好地解决问题,并在解决问题的同时提高自身能力。

  (二)提高答题效率,减轻学生压力。目前学生压力大,课后作业占据学生大部分放松时间。学生在课后作业上面花费的时间越来越多,是因为课后作业不断增多还是因为学生不会做题而无法快速完成?这个问题的答案从优秀学生和后进学生身上可以反映出。学习好的学生几乎在学校就可以基本完成老师布置的作业,回家后还利用休闲时间对所学内容进行复习或者做自己买的练习,甚至可以挤出时间看课外书。但是成绩差的学生可能回家做了几个小时的作业还没有完成老师布置的作业,更别说做自己购买的练习或者看书复习了。这是什么原因?因为成绩不好的学生对学习的知识还不是很了解,并且不会灵活运用,他们只会做上课老师所讲的题目,如果让他们解与老师所讲的题目做法相同但是条件不一样的题目可能仍无法解决或者需要花费很久时间。这种情况下最好的解决办法就是运用变式教学,在学生了解教学内容基本概念之后给学生不断练习不同的题型,只有不断解题之后学生才可以牢记所学知识,并且能够活用,而且日后学习中还要不断练习和巩固。但是在变式教*用上需要注意以下几点:第一,根据学生正常学习新内容的能力给学生安排合适练习;第二,加强学生对专业性概念的理解,只有在学生理解数学概念的基础上才可能运用概念,如果对概念都无法理解几乎无法解决那一类题目;第三,在学生学习新知识时,教育者可以把该知识与学生之前所学的知识相联系,让学生通过对旧知识的巩固学习新知识,容易理解和掌握现在要学习的知识。变式教学是保持数学题目中原有的`实质,对题目进行改变并通过不同方式展现出的一系列问题变化,通过这样教学可以提高学生对知识的掌握程度,轻松地运用所学知识举一反三,快速解答问题,在很大程度上提高学生解题效率,并且减轻学生的学习压力。

  二、通过变式教学加强学生对数学的学习

  变式教学通过不改变题目基本知识点而改变题目题型为学生学习提供开放性的条件,让学生通过各方面研究和多角度思考解答该题目。在很大程度上提高学生的逻辑思维能力,让学生的反应更灵活,增强他们对做题的自信,并且更喜欢学习。在变式教学中,教育者可以给学生提供更多数学练习,在不同数学练习中学生只有不断研究、不断对比,并且愿意主动去思考、去提问,才可以不被其他同学比下去。但是做题时学生不应该死板,在做题前应思考今天学习了什么知识,并与之前所做的题目相比较。在不断练习之后,他们会发现题目想要考查的知识点是相同的,只是题型不同而已。经过对不同题型的练习和思考,提升学生的解题速度,让学生了解一道题目可以用不同方法解决,很好地提高逻辑能力。

  三、变式教学的实施

  (一)变式教学的运用时机。进行变式教学时教育者应该选择合适的时间,就是在学生初步了解一项数学知识之后。刚教完数学概念后,学生对该条概念还不是十分了解,这个时候教育者就需要让学生练习不同题目对该项知识加以深刻了解和巩固。需要注意的是老师给出的题目应当从简单到复杂、从小到大。这样可以让学生一步步详细了解概念,而不是一开始就给学生难题让学生花费过多时间解决,结果可能就是学生无法做出该题目,并且对概念的理解还和之前一样,那么这将是无用功。

  (二)改变问题的条件。在学生解决一个问题之后老师可以适当改变问题中的条件让学生练习。如证明一个四边形是*行四边形,我们知道证明一个图形是*行四边形有许多种方法,如证明两组对边*行或者一组对边*行且相等,如果在一道证明题中该题之前的条件为一组对边*行且相等,那么我们可以转变为两组对边*行,结论还是该四边形是*行四边形。但是改变条件后是运用了另一个原理证出*行四边形,不仅巩固学习内容,还让学生了解到问题的解决可以采取多种方法。对学生解决其他问题运用多种办法有促进作用。变式教学是通过不同方法、不同角度等反映出教学中的基础问题。通过变式教学不断提高学生的逻辑思维能力、应变能力和创新能力,并且有力地开发学生的潜能,让学生更热爱学习,同时减轻学习压力。可以说目前教学中变式教育是一种重要的教学方法,并且取得一定的成果。

七年级数学教学设计7

  一、学生情况分析

  本学期担任七年级(1)班数学,该班共有学生49人。七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,七年级学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应七年级教学的新要求,要重视对学生进行记法指导。

  二、教材及课标分析

  第一章 有理数

  1.通过实际例子,感受引入负数的必要性.会用正负数表示实际问题中的数量.

  2.理解有理数的意义,能用数轴上的点表示有理数.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小.通过上述内容的学习,体会从数与形两方面考虑问题的方法.

  3.掌握有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算.能运用有理数的运算解决简单的问题.

  4.理解乘方的意义,会进行乘方的运算及简单的混合运算(以三步为主).通过实例进一步感受大数,并能用科学记数法表示.了解近似数与有效数字的概念.

  第二章 一元一次方程

  1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步.

  2.通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法.

  3.了解解方程的基本目标(使方程逐步转化为x=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想.

  4.能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想.

  5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力.

  第三章 图形认识初步

  1.通过大量的实例,体验、感受和认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特征,能识别这些几何体,初步了解从具体事物中抽象出几何概念的方法,以及特殊与一般的辩证关系.

  2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的*面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象和制作立体模型;通过丰富的实例,进一步认识点、线、面、体,理解它们之间的关系.在*面图形和立体图形相互转换的过程中,初步建立空间观念,发展几何直觉.

  3.进一步认识直线、射线、线段的概念,掌握它们的表示方法;结合实例,了解两点确定一条直线和两点之间线段最短的性质,理解两点之间的距离的含义;会比较线段的大小,理解线段的和差及线段的中点的概念,会画一条线段等于已知线段.

  4.通过丰富的实例,进一步认识角,理解角的两种描述方法,掌握角的表示方法;会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,并会进行简单的换算;了解角的*分线的概念,了解余角和补角的概念,知道“等角的补角相等”“等角的余角相等”的性质质,会画一个角等于已知角(尺规作图).

  5.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.

  6.初步体验图形是描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.

  7.激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.

  第四章 数据的收集与整理

  1.了解通过全面调查和抽样调查收集数据的方法;会设计简单的调查问卷收集数据;能根据问题查找有关资料,获得数据信息.

  2.初步感受抽样的必要性,初步体会用样本估计总体的思想.

  3.掌握划记法,会用表格整理数据.

  4.进一步体会条形图、扇形图和折线图在描述数据中的作用.

  5.能用计算器处理简单统计数据,进一步体会计算器处理运算的优越性.

  6.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.

  三、具体措施

  1、认真学习教育教学理论,落实课标理念,让学生通过观察、思考、探究、讨论、归纳,主动地进行学习。

  2、把握好与前两个阶段的衔接,把握好教学要求,不要随意拨高。

  3、突出方程这个重点内容,将有关式的预备知识融于讨论方程的过程中;突出列方程,结合实际问题讨论解方程;通过加强探究性,培养分析解决问题的能力、创新精神和实践意识;重视数学思想方法的渗透,关注数学文化。

  4、把握好“图形初步认识”的有关内容的要求。充分利用现实世界中的实物原型进行教学,展示丰富多彩的几何世界;强调学生的动手操作和主动参与,让他们在观察、操作、想象、交流等活中认识图形,发展空间观念;注重概念间的联系,在对比中加深理解,重视几何语言的培养和训练;利用好选学内容。

  5、适当加强练习,加深对基本知识和基本技能的掌握,但不一味追求练习的数量。

  6、强调在统计活动的过程中建立统计观念,改进学生的学习方式。突出统计思想;选择真实素材进行教学;

  7、重视现代信息技术的运用,着重利用计算器,丰富学习资源。

  8、搞好教学六认真,注重对学生进行学法指导。读法指导、听法指导、思法指【您现在访问的是数学教学计划,请勿转载或建立镜像】导、写法指导、记法指导。

  【结语】:以上就是关于《第一学期七年级数学教学计划》的具体内容,谢谢查阅。

七年级数学教学设计8

  一、教学目标

  1、知识与能力:通过与温度计的类比,认识数轴,会用数轴上的点表示有理数;借助数轴理解相反数的概念,知道互为相反的一对数在数轴上的位置关系;会求一个有理数的相反数;能利用数轴比较有理数的大小。

  2、过程与方法:经历从现实问题中建立数学模型,从数形两个侧面理解与解决问题,使学生认识用形来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念。

  3、情感态度与价值观:从学生熟悉的现实情境中学习数轴,体会数学知识与现实世界的联系;通过分组动手操作实践,体会数学充满探索性,并在学习活动中学会合作、学会发现知识,找到获取知识的方法,使学生体验到成功的乐趣,数学知识的应用价值。

  二、教学重点:

  数轴和相反数的概念及用数轴上的点表示有理数

  三、教学难点:

  数轴的概念和相反数反映在数轴上的性质

  四、教学设计

  (一)创设情境,引出课题

  教师出示一只温度计,首先让学生说说温度计在日常生活中的应用,然出提问:

  (1)温度计上的刻度是怎样表示温度的?

  (2)把温度计横放(零上温度向右),你觉得它像什么?

  (3)你能把温度计的刻度画在纸上吗?引出新课:“数轴”。

  (借助于温度计,用类比的数学思想方法,使学生易于接受数轴。感受到数学是真实的、亲切的。这些问题的创设有利于唤起学生的好奇心,激发学生的求知欲,调动学生的思维积极性,学生很自然地投入到学习活动中去。)

  (二)合作讨论,探究新知

  1、动手操作:师生一起画一条数轴。

  [讲清数轴的画法:一画(直线);二定(定原定);三选(选正方向);四统一(单位长度要统一)。]

  2、观察数轴有什么特征?(让学生讨论)

  (如:数轴的三要素——原点、正方向、单位长度,类比温度计三者缺一不可,正数都在原点的右边,负数都在原点的左边等等。)

  3、考考你:下面图形是数轴的是( )

  (A) (B)

  (C) (D)

  (通过判断,加深对数轴概念的理解,掌握正确的画法。)

  4、问题:类似温度计的刻度,任何有理数都能用数轴上的点表示吗?

  (引导学生独立思考得出:正数用原点右边的点表示,负数用原点左边的点表示,零用原点表示,任何一个有理数都可以用数轴上的点来表示。)

  (通过设置问题串,使学生了解知识的产生过程,培养学生分析、归纳的能力,实现从实践到理论的提高。)

  (三)解释应用,体验成功

  1、例题教学

  例1 指出数轴上A、B、C、D各点表示什么数?

  (合作交流,获取正确答案)

  (指出数轴上已知点所表示的数,是由“形”到“数”的过程。)

  例2画出数轴,并用数轴上的点表示下列各数:

  4,,-5,0,5,-4,-

  (动手操作,体验数学活动充满探索。)

  (把给定的数用数轴上的点表示,是“数”到“形”的思维过程。)

  归纳:例1、例2,从两个侧面体现了数形结合的意思,是教学中要渗透的数学思想方法。

  2.观察例2中画好的数轴,4与-4有什么相同与不同之处,与-,-5与5呢?像这样关系的两个数你还能找出多少对?

  合作讨论:相同点是:它们在数轴上的位置到原点的距离都是两个长度单位;不同点是:它们位居原点的两边。这样的数对可找出无数对,如:与-,5与-5等。

  教师引导学生得出:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数是互为相反数,特别地,0的相反数是0。通常在一个数的前面添上“-”号,或改变符号,用这个新数表示原数的相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  3、考考你:

  (1)下面两个数是互为相反数的是( )

  A、-与0.2 B、与-0.333

  C、-2.25与2 D、π与3.14

  (2)写出三对非零相反数

  (四)拓展创新,巩固概念

  (1)问题:数轴上的两个点,右边的点表示的数与左边的点表示的数有怎样的大小关系?你能举例说明吗?

  (分组讨论、合作交流、获得数学的猜想。)

  (猜想温度计上显示的温度,上边的温度总比下边的温度高,如:-5℃比-7℃温度高,所以右边的点表示的数总比左边的点表示的数大,即:-5>-7。)

  (2)在数轴上距原点3个单位长度的点表示什么数?它们有什么关系?距原点5个单位呢?a个单位呢?(a>0)

  (学生回答,并相互补充,培养学生发散思维的能力;知道若a为有理数,则它的相反数为-a。)

  (3)书上12页练习1与练习2

  (五)课堂小结

  通过本节课的学习,你有什么收获?

  (数轴和相反数的概念,把有理数表示在数轴上,

  (六)课外延伸(有兴趣的同学完成)

  1、填一填:

  右面是一个正方体纸盒的展开图,请把-10、7、10、-2、-7、2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两上数互为相反数。

  (课外同学之间讨论,尝试不同的填法,并用模型检验结果的正确性,本题要求学生有一定的空间想象力,将“数”和“形”有关内容有机地结合起来。)

  2、想一想:某人在A地向东走10米,然后折回向西走3米,又折回向东走6米,问此人在A地哪个方向?距离为多少?答:此人在A地正东方向,距离A地13米。

  (可借助于数轴求解,把实际问题转化为数学模型,以A为原点,向东为正建立模型,实际行走的路线为A→B→C→D。)

  向东走10米

  -2 -1 0 1 2

  1 2 3

  -2 -1 0 1 2

  -3-2 -1 0 1 2 3

  -2 -1 0 1 2

  A D C B

  · · · ·

  -2 0 2 4 6 8 10 12

  A C B D

  ? ? ? ?

七年级数学教学设计9

  教学建议

  (一)教材分析

  1、知识结构

  2、重点、难点分析

  重点:找出命题的题设和结论.因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础.

  难点:找出一个命题的题设和结论.因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题.但有些命题的题设和结论不明显.例如,“对顶角相等”,“等角的余角相等”等.一些没有写成“如果……那么……”形式的命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点.

  (二)教学建议

  1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假.

  2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解:

  (1)假命题可分为两类情况:

  ①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的命题.

  ②题设有多种情形,其中至少有一种情形的结论是错误的.例如,“内错角互补,两直线*行”这个命题的题设可分为两种情形:第一种情形是两个内错角都等于90°,这时两直线*行;第二种情形是两个内错角不都等于90°,这时两直线不*行.整体说来,这是错误的命题.

  (2)是否是命题:

  命题的定义包括两层涵义:①命题必须是一个完整的句子;②这个句子必须对某件事情做出肯定或者否定的判断.即命题是判断某一件事情的句子.在语法上,这样的句子叫做陈述句,它由“题设+结论”构成.

  另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的*行线.”疑问句“∠A是否等于∠B?”感叹句“竟然得到5>9的结果!”以上三个句子都不是命题.

  (3)命题的组成

  每个命题都是由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果…,那么…”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.

  有些命题,没有写成“如果…,那么…”的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果…那么…”的形式.

  另外命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.

  教学设计示例:

  教学目标

  1.使学生对命题、真命题、假命题等概念有所理解.

  2.使学生理解几何命题的组成,能够区分命题的题设和结论两部分,并能将命题改写成“如果……,那么……”的形式.

  3.会判断一些命题的真假.

  教学重点和难点

  本节的重点和难点是:找出一个命题的题设和结论.

  教学过程设计

  一、分析语句,理解命题

  1.教师让学生随意说一句完整的话,每个小组可以派一名同学说,如:

  (1)我是*人。

  (2)我家住在北京。

  (3)你吃饭了吗?

  (4)两条直线*行,内错角相等。

  (5)画一个45°的角。

  (6)*角与周角一定不相等。

  2.找出哪些是判断某一件事情的句子?

  学生答:(1),(2),(4),(6)。

  3.教师给出命题的概念,并举例。

  命题:判断一件事情中,每句话都判断什么事情.所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清.在数学课中,只研究数学命题,请学生举几个数学命题的例子,每组再选一个同学说.(不要让说过的再说)

  如:的句子,叫做命题,分析(3),(5)为什么不是命题.

  教师分析以上命题

  (1)对顶角相等。

  (2)等角的余角相等。

  (3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的*分线。

  (4)如果a>0,b>0,那么a+b>0。

  (5)当a>0时,|a|=a。

  (6)小于直角的角一定是锐角。

  在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题。

  (7)a>0,b>0,a+b=0。

  (8)2与3的和是4。

  有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的理解。

  4.分析命题的构成,改写命题的形式。

  例两条直线*行,同位角相等.

  (l)分析此命题的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论.已知事项为“题设”,由已知推出的事项为“结论”。

  (2)改写命题的形式。

  由于题设是条件,可以写成“如果……”的形式,结论写成“那么……”的形式,所以上述命题可以改写成“如果两条*行线被第三条直线所截,那么同位角相等。”

  请同学们将下列命题写成“如果……,那么……”的形式,例:

  ①对顶角相等。

  如果两个角是对顶角,那么它们相等。

  ②两条直线*行,内错角相等。

  如果两条直线*行,那么内错角相等。

  ③等角的补角相等。

  如果两个角是等角,那么它们的补角相等。(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等。)

  以上三个命题的改写由学生进行,对(2)要更改为“如果两条*行线被第三条直线所截,那么内错角相等。”

  提示学生注意:题设的条件要全面、准确.如果条件不止一个时,要一一列出。

  如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为:

  “如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直。”

  二、分析命题,理解真、假命题

  1.让学生分析两个命题的不同之处。

  (l)若a>0,b>0,则a+b>0

  (2)若a>0,b>0,则a+b<0

  相同之处:都是命题.为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论。

  不同之处:(1)中的结论是正确的.,(2)中的结论是错误的。

  教师及时指出:同学们发现了命题的两种情况。结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题。

  2.给出真、假命题定义

  真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题。

  假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题。

  注意:

  (1)真命题中的“一定成立”不能有一个例外,如命题:“a≥0,b>0,则ab>0”。显然当a=0时,ab>0不成立,所以该题是假命题,不是真命题。

  (2)假命题中“结论不成立”是指“不能保证结论总是正确”,如:“a的倒数一定是”,显然当a=0时命题不正确,所以也是假命题。

  (3)注意命题与假命题的区别.如:“延长直线AB”.这本身不是命题.也更不是假命题。

  (4)命题是一个判断,判断的结果就有对错之分.因此就要引入真假命题,强调真假命题的大前提,首先是命题。

  3.运用概念,判断真假命题。

  例请判断以下命题的真假。

  (1)若ab>0,则a>0,b>0。

  (2)两条直线相交,只有一个交点。

  (3)如果n是整数,那么2n是偶数。

  (4)如果两个角不是对顶角,那么它们不相等。

  (5)直角是*角的一半。

  解:(1)(4)都是假命题,(2)(3)(5)是真命题.

  4.介绍一个不辨真伪的命题.

  “每一个大于4的偶数都可以表示成两个质数之和”。(即著名的哥德巴赫猜想)

  我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确.我国著名的数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”.即已经证明了“1+2”,离“1+1”只差“一步之遥”,所以这个命题的真假还不能做最好的判定。

  5.怎样辨别一个命题的真假。

  (l)实际生活问题,实践是检验真理的唯一标准。

  (2)数学中判定一个命题是真命题,要经过证明。

  (3)要判断一个命题是假命题,只需举一个反例即可。

  三、总结

  师生共同回忆本节的学习内容。

  1.什么叫命题?真命题?假命题?

  2.命题是由哪两部分构成的?

  3.怎样将命题写成“如果……,那么……”的形式。

  4.初步会判断真假命题.

  教师提示应注意的问题:

  1.命题与真、假命题的关系。

  2.抓住命题的两部分构成,判断一些语句是否为命题。

  3.命题中的题设条件,有两个或两个以上,写“如果”时应写全面。

  4.判断假命题,只需举一个反例,而判断真命题,数学问题要经过证明。

  四、作业

  1.选用课本习题。

  2.以下供参选用。

  (1)指出下列语句中的命题。

  ①我爱祖国。

  ②直线没有端点。

  ③作∠AOB的*分线OE。

  ④两条直线*行,一定没有交点。

  ⑤能被5整除的数,末位一定是0。

  ⑥奇数不能被2整除。

  ⑦学习几何不难。

  (2)找出下列各句中的真命题。

  ①若a=b,则a2=b2。

  ②连结A,B两点,得到线段AB。

  ③不是正数,就不会大于零。

  ④90°的角一定是直角。

  ⑤凡是相等的角都是直角。

  (3)将下列命题写成“如果……,那么……”的形式。

  ①两条直线*行,同旁内角互补。

  ②若a2=b2,则a=b。

  ③同号两数相加,符号不变。

  ④偶数都能被2整除。

  ⑤两个单项式的和是多项式。

七年级数学教学设计10

  教学目标

  1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

  2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)

  3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

  教学难点

  深化对正负数概念的理解

  知识重点

  正确理解和表示向指定方向变化的量

  教学过程

  (师生活动)设计理念知识回顾与深化回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示。这就是说:数的范围扩大了(数有正数和负数之分)。那么,有没有一种既不是正数又不是负数的数呢?

  问题1:有没有一种既不是正数又不是负数的数呢?

  学生思考并讨论。

  (数0既不是正数又不是负数,是正数和负数的分界,是基准。这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

  例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和—5℃,这里+7℃和—5℃就分别称为正数和负数。

  那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数。

  问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?

  “数0耽不是正数,也不是负数”也应看作是负数定义的一部分。在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

  所举的例子,要考虑学生的可接受性。“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明。这个问题只要初步认识即可,不必深究。

  问题3:教科书第6页例题

  说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

  归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页)。

  类似的例子很多,如:

  水位上升—3m,实际表示什么意思呢?

  收人增加—10%,实际表示什么意思呢?等等。

  可视教学中的实际情况进行补充。

  这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健。这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少—2kg,但现在不必向学生提出。

  巩固练习教科书第6页练习

  阅读思考

  教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

  小结与作业

  课堂小结以问题的形式,要求学生思考交流:

  1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

  2,怎样用正负数表示具有相反意义的量?

  (用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数。)

  本课作业1,必做题:教科书第7页习题1。1第3,6,7,8题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。

  2,“数0既不是正数,也不是负数。”(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分。在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助。由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课。

  3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解。

  4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识。通过实际例子的学习激发学生学习数学的兴趣。

推荐访问:教学设计 七年级数学 七年级数学教学设计【10篇】 七年级数学教学设计1 七年级数学教学设计1分钟

Top