卓迈文档网
当前位置 首页 >专题范文 > 公文范文 >

《圆周角》教学反思3篇(范文推荐)

发布时间:2022-12-30 19:10:05 来源:网友投稿

《圆周角》教学反思1  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、下面是小编为大家整理的《圆周角》教学反思3篇(范文推荐),供大家参考。

《圆周角》教学反思3篇(范文推荐)

《圆周角》教学反思1

  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。*古代的几何学家研究几何是为了实用,是唯用是尚的。在勾股定理教学中反思如下:

  一转变师生角色,让学生自主学习。

  由同学们的作图,我们发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。当然作图存在着误差。可仍然证明不了我们的猜想是否正确。下面我们用拼图的方法再来验证一下。请同学们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明a2+b2=c2(学生分组讨论。)学生展示拼图方法,课件辅助演示。

  新课标下要求教师个人素质越来越高,教师自身要不断及时地学习新知识,接受新信息,对自己及时充电、更新,而且要具有诙谐幽默的语言表达能力。既要有领导者的组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。

  “教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1*方米到底有多大?因此,新课标要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。

  数学的创造性不能没有逻辑思维,学习数学可以帮助养成理性思考的习惯。数学并不是公式的堆垒,也不是图形的汇集,数学有逻辑性很强的体系。数学不是只强调计算与规则的课程,而是讲道理的课程。培养与运用逻辑思维,并不是不顾及学生的可接受性一味地片面强调推理的严密和体系的完整,而是既要体现逻辑推理的作用,又不片面夸大它。几何的教学体系有别于几何的科学体系,在几何教学中,讲道理并完全不等同于纯粹的形式证明,几何教学培养逻辑思维能力同样要有的放矢,循序渐进,从直观到抽象,从简单到复杂?? 二转变教学方式,让学生探索、研究、体会学习过程。

  学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于学生实践能力的培养非常不利的。现在的数学教学到处充斥着过量的、重复的、不断循环的、人为挖掘的训练。 学习的过程性:

  1.关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;

  2.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理. 学习的知识性:掌握勾股定理,体会数形结合的思想.

  试一试:我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面。请问这个水池的深度和芦苇的长度各是多少?

  新课标对几何内容的安排。安排采取了首先是直观和经验,接着是说理与抽象,最后是演绎

  的方案。以直线形为例,先借助直观认识一个直线形,进而借助多种手段合乎情理地发现它的某种几何性质,接着通过演绎推理把这个性质搞定。看上去,强化了直观和实验,弱化了推理,实际上,在这里直观和推理两者都很重要,而且两者之间互为支撑,有互逆的性质。让直观几何和推理几何并重,把发现和证明绑在一起,与传统的几何课程体系确有不同。说到几何,新课标对几何的重视程度丝毫没有减弱,而是在加强。例如直观和实验几何的触角已经伸向了小学低年级,同时欧氏几何的体系和内容差不多还是完整呈现。如果说有所弱化,就是具体要求降低了,这种降低主要体现在两个方面,一个是对推理几何的难度要求有所限制,另外是弱化了相似形和圆(包括圆与直线之间的关系)这块内容的证明部分。

  教材内容的丰富,充分激发了学生的学习积极性。教材编排了一些游戏性的智力题,引导学生发现数学规律,探索数学世界的奥秘,采用阅读一些数学小故事和数学发展史,丰富学生的数学知识和对世界数学文化的了解,充分激发了学生继续学习数学和发展数学的积极性,把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别侧重于培养学生认识事物,探索问题,解决实际的能力。让学生感兴趣且愿意学,并且接受知识是循序渐进的过程,随着数学知识的不断学习,也使学生亲身体会到了学习数学的重要意义:我们的生活中处处离不开数学,处处需要数学,学习数学也是非常有意思的。三提高教学科技含量,充分利用多媒体。

  几何图形可以直观地表示出来,人们认识图形的初级阶段中主要依靠形象思维。远古时期人们对几何图形的认识始于观察、测量、比较等直观实验手段,现代儿童认识几何图形亦如此,人们可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置.

  培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。在这套教科书的几何部分,七年级上、下两册要先后经历“说点儿理”“说理”“简单推理”几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的思维习惯。

  由于信息技术的发展与普及,直观实验手段在教学中日益增加,有些学校还建立了“数学实验室”,这些对于几何学的学习起到积极作用。随着教学研究的不断深入,直观实验会在启发诱导、化难为易、检验猜想等方面进一步大显身手。但是,直观实验终归是数学学习的辅助手段,数学毕竟不是实验科学,它不能象物理、化学、生物等学科那样最后通过实验来确定结论。实验几何只是学习几何学的前奏曲或第一乐章,后面的乐曲建立在理性思维基础上,逻辑推理是把演奏推向高潮的主要手段。

  四转变评价手段,让每个学生找到学习数学的自信。

  评价就其实质来讲,乃是一种监控机制。这种反馈监控机制包括"他律"与"自律"两个方面。所谓"他律"是以他人评价为基础的,"自律"是以自我评价为基础的"。每个人素质生成都经历着一个从"他律"到"自律"的发展过程,经历着一个从学会评价他人到学会评价自己的发展过程。实施他人评价,完善素质发展的他人监控机制很有必要。每个人都要以他人为镜,从他人这面镜子中照见自我。但发展的成熟、素质的完善主要建立在自律的基础上,是以素质的自我评价、自我调节、自我教育为标志的。因此要改变单纯由教师评价的现状,提倡评价主体的多元化,把教师评价、同学评价、家长评价及学生的自评相结合。尤其要突出学生的自评,提高他们的自我认识、自我调节、自我评价的能力,增强反思意识,培养健康的心理。 注重数学与生活的联系,从学生认知规律和接受水*出发,这些理念贯彻到教材与课堂教学当中,很好地激发了学生学习数学的兴趣。学生们善于提出问题、敢于提出问题、解决问题的能力强,已经成为数学新课标下学生表现的一个标志。

  通过学习几何可以认识丰富多彩的几何图形,建立与发展空间观念,掌握必要的几何知识,培养运用这些知识认识世界与改造世界的能力。但是,这些并不是几何学的全部教育功能。从更深层次看,学习几何学的一个重要的作用是:以几何图形为载体,培养逻辑思维能力,提高理性思维水*。这正是自古希腊开始几何教学一直倍受重视的主要原因。

  从实际需要看,一个普通人一生中运用几何知识的时间、场合,要比他应该运用逻辑思维的时间、场合少得多。前者在特定的环境下发生,而后者经常地、普遍地出现,它的作用远比前者大得多。一个人学过几何后,如果不继续从事与数学关系密切的学习或工作,他一生中有可能很少甚至不会用到在某个几何定理,但是他肯定应该经常不断地在不同程度上使用逻辑推理来分析问题。当然,其他课程也可以培养学生的逻辑思维能力,学习几何学并不是实现此目的之唯一途径。但是,长期以来几何学被普遍认为是适合培养逻辑思维能力的绝好课程是客观事实。形成这种状况的原因主要有:几何学的历史悠久,学科体系成熟;几何学体系的逻辑性特点格外突出;几何学的研究对象是几何图形,结合几何图形,利用图形语言,在一定程度上可以降低认识和理解逻辑推理的难度。

  按照人的一般认知规律,认识几何图形的过程,也是从具体到抽象,从简单到复杂,从特殊到一般,从感性到理性的过程。根据教育心理学的规律可知,初中学生多处于认识方法发生升华的阶段,他们对事物的认识已不满足于表面的、孤立的层次,而有了向更深层次发展的要求,即向往“由此及彼,由表及里”的思维方式。从几何教学的内容看,学生们从小学开始已经通过直观实验这种主要方式学习了基础的图形知识,在他们的头脑中已经积累了一定的关于图形的感性认识,在初中阶段应该更深入地在“为什么”的层面上认识图形。显然,单纯的直观实验这种学习方式已经不适应继续深入学习的需要,因为这种方式难以真正从道理上对图形规律进行解释,而逻辑推理的方式才能担此重任。因此,从“实验几何”向“推理几何”的过渡成为初中几何教学必须面对的问题,培养逻辑推理能力成为初中几何教学必须实现的教学目标。

  认识几何图形既需要形象思维,又需要抽象思维,两者相辅相成。虽然我们强调几何教学中逻辑推理的重要性,但是并不排斥直观实验。直观实验是初级认识手段,逻辑推理是高级认识手段。“看一看”“量一量”“做一做”等直观实验活动在几何学习的初始阶段的重要性尤为突出,即使在推理几何阶段的学习中,直观实验也具有重要的辅助作用,人们常借助某些直观特例来发现一般规律、探寻证明思路、理解抽象内容,有时直观实验与逻辑推理是交替进行的。

  让学生享受数学的有趣:可利用愉快的游戏、生动的故事、激烈的竞赛、入境的表演、热情的掌声等创设出一种愉悦的学习情境,诱发学生的学习情趣;让学生时常感受到“数学真奇妙!”,从而产生“我也想试一试!”的心理。

  让学生享受数学的有用:借助生活情境,让学生寻找有关的数学问题,使学生体会到我们的生活中蕴涵着丰富的数学问题,感受数学学习在生活中的作用。

  让学生享受数学的精彩:创设一切机会让学生学会思考,乐于思考、善于思考,只有这样,数学才能展示其精彩的一面;在教学中可有意识地安排一些问题让学生多途径思考,发现答案有多种多样;让他们体味出更多的精彩!享受数学的成功:“教育教学的本质就是帮助学生成功。”一次成功的机会却可以十倍地增强学生的信心;因此,课堂上教师应毫不吝啬自己鼓励的眼神、赞许的话语,批改作业时尽量少一些令人生厌的“×”,可以写上“再算算”。

《圆周角》教学反思2

  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。*古代的几何学家研究几何是为了实用,是唯用是尚的。在勾股定理教学中反思如下:

  一转变师生角色,让学生自主学习。

  由同学们的作图,我们发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。当然作图存在着误差。可仍然证明不了我们的猜想是否正确。下面我们用拼图的方法再来验证一下。请同学们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明a2+b2=c2(学生分组讨论。)学生展示拼图方法,课件辅助演示。

  新课标下要求教师个人素质越来越高,教师自身要不断及时地学习新知识,接受新信息,对自己及时充电、更新,而且要具有诙谐幽默的语言表达能力。既要有领导者的组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。

  “教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1*方米到底有多大?因此,新课标要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。

  数学的创造性不能没有逻辑思维,学习数学可以帮助养成理性思考的习惯。数学并不是公式的堆垒,也不是图形的汇集,数学有逻辑性很强的体系。数学不是只强调计算与规则的课程,而是讲道理的课程。培养与运用逻辑思维,并不是不顾及学生的可接受性一味地片面强调推理的严密和体系的完整,而是既要体现逻辑推理的作用,又不片面夸大它。几何的教学体系有别于几何的科学体系,在几何教学中,讲道理并完全不等同于纯粹的形式证明,几何教学培养逻辑思维能力同样要有的放矢,循序渐进,从直观到抽象,从简单到复杂?? 二转变教学方式,让学生探索、研究、体会学习过程。

  学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于学生实践能力的培养非常不利的。现在的数学教学到处充斥着过量的、重复的、不断循环的、人为挖掘的训练。 学习的过程性:

  1.关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;

  2.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理. 学习的知识性:掌握勾股定理,体会数形结合的思想.

  试一试:我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面。请问这个水池的深度和芦苇的长度各是多少?

  新课标对几何内容的安排。安排采取了首先是直观和经验,接着是说理与抽象,最后是演绎

  的方案。以直线形为例,先借助直观认识一个直线形,进而借助多种手段合乎情理地发现它的某种几何性质,接着通过演绎推理把这个性质搞定。看上去,强化了直观和实验,弱化了推理,实际上,在这里直观和推理两者都很重要,而且两者之间互为支撑,有互逆的性质。让直观几何和推理几何并重,把发现和证明绑在一起,与传统的几何课程体系确有不同。说到几何,新课标对几何的重视程度丝毫没有减弱,而是在加强。例如直观和实验几何的触角已经伸向了小学低年级,同时欧氏几何的体系和内容差不多还是完整呈现。如果说有所弱化,就是具体要求降低了,这种降低主要体现在两个方面,一个是对推理几何的难度要求有所限制,另外是弱化了相似形和圆(包括圆与直线之间的"关系)这块内容的证明部分。

  教材内容的丰富,充分激发了学生的学习积极性。教材编排了一些游戏性的智力题,引导学生发现数学规律,探索数学世界的奥秘,采用阅读一些数学小故事和数学发展史,丰富学生的数学知识和对世界数学文化的了解,充分激发了学生继续学习数学和发展数学的积极性,把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别侧重于培养学生认识事物,探索问题,解决实际的能力。让学生感兴趣且愿意学,并且接受知识是循序渐进的过程,随着数学知识的不断学习,也使学生亲身体会到了学习数学的重要意义:我们的生活中处处离不开数学,处处需要数学,学习数学也是非常有意思的。三提高教学科技含量,充分利用多媒体。

  几何图形可以直观地表示出来,人们认识图形的初级阶段中主要依靠形象思维。远古时期人们对几何图形的认识始于观察、测量、比较等直观实验手段,现代儿童认识几何图形亦如此,人们可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置.

  培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。在这套教科书的几何部分,七年级上、下两册要先后经历“说点儿理”“说理”“简单推理”几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的思维习惯。

  由于信息技术的发展与普及,直观实验手段在教学中日益增加,有些学校还建立了“数学实验室”,这些对于几何学的学习起到积极作用。随着教学研究的不断深入,直观实验会在启发诱导、化难为易、检验猜想等方面进一步大显身手。但是,直观实验终归是数学学习的辅助手段,数学毕竟不是实验科学,它不能象物理、化学、生物等学科那样最后通过实验来确定结论。实验几何只是学习几何学的前奏曲或第一乐章,后面的乐曲建立在理性思维基础上,逻辑推理是把演奏推向高潮的主要手段。

  四转变评价手段,让每个学生找到学习数学的自信。

  评价就其实质来讲,乃是一种监控机制。这种反馈监控机制包括"他律"与"自律"两个方面。所谓"他律"是以他人评价为基础的,"自律"是以自我评价为基础的。每个人素质生成都经历着一个从"他律"到"自律"的发展过程,经历着一个从学会评价他人到学会评价自己的发展过程。实施他人评价,完善素质发展的他人监控机制很有必要。每个人都要以他人为镜,从他人这面镜子中照见自我。但发展的成熟、素质的完善主要建立在自律的基础上,是以素质的自我评价、自我调节、自我教育为标志的。因此要改变单纯由教师评价的现状,提倡评价主体的多元化,把教师评价、同学评价、家长评价及学生的自评相结合。尤其要突出学生的自评,提高他们的自我认识、自我调节、自我评价的能力,增强反思意识,培养健康的心理。 注重数学与生活的联系,从学生认知规律和接受水*出发,这些理念贯彻到教材与课堂教学当中,很好地激发了学生学习数学的兴趣。学生们善于提出问题、敢于提出问题、解决问题的能力强,已经成为数学新课标下学生表现的一个标志。

  通过学习几何可以认识丰富多彩的几何图形,建立与发展空间观念,掌握必要的几何知识,培养运用这些知识认识世界与改造世界的能力。但是,这些并不是几何学的全部教育功能。从更深层次看,学习几何学的一个重要的作用是:以几何图形为载体,培养逻辑思维能力,提高理性思维水*。这正是自古希腊开始几何教学一直倍受重视的主要原因。

  从实际需要看,一个普通人一生中运用几何知识的时间、场合,要比他应该运用逻辑思维的时间、场合少得多。前者在特定的环境下发生,而后者经常地、普遍地出现,它的作用远比前者大得多。一个人学过几何后,如果不继续从事与数学关系密切的学习或工作,他一生中有可能很少甚至不会用到在某个几何定理,但是他肯定应该经常不断地在不同程度上使用逻辑推理来分析问题。当然,其他课程也可以培养学生的逻辑思维能力,学习几何学并不是实现此目的之唯一途径。但是,长期以来几何学被普遍认为是适合培养逻辑思维能力的绝好课程是客观事实。形成这种状况的原因主要有:几何学的历史悠久,学科体系成熟;几何学体系的逻辑性特点格外突出;几何学的研究对象是几何图形,结合几何图形,利用图形语言,在一定程度上可以降低认识和理解逻辑推理的难度。

  按照人的一般认知规律,认识几何图形的过程,也是从具体到抽象,从简单到复杂,从特殊到一般,从感性到理性的过程。根据教育心理学的规律可知,初中学生多处于认识方法发生升华的阶段,他们对事物的认识已不满足于表面的、孤立的层次,而有了向更深层次发展的要求,即向往“由此及彼,由表及里”的思维方式。从几何教学的内容看,学生们从小学开始已经通过直观实验这种主要方式学习了基础的图形知识,在他们的头脑中已经积累了一定的关于图形的感性认识,在初中阶段应该更深入地在“为什么”的层面上认识图形。显然,单纯的直观实验这种学习方式已经不适应继续深入学习的需要,因为这种方式难以真正从道理上对图形规律进行解释,而逻辑推理的方式才能担此重任。因此,从“实验几何”向“推理几何”的过渡成为初中几何教学必须面对的问题,培养逻辑推理能力成为初中几何教学必须实现的教学目标。

  认识几何图形既需要形象思维,又需要抽象思维,两者相辅相成。虽然我们强调几何教学中逻辑推理的重要性,但是并不排斥直观实验。直观实验是初级认识手段,逻辑推理是高级认识手段。“看一看”“量一量”“做一做”等直观实验活动在几何学习的初始阶段的重要性尤为突出,即使在推理几何阶段的学习中,直观实验也具有重要的辅助作用,人们常借助某些直观特例来发现一般规律、探寻证明思路、理解抽象内容,有时直观实验与逻辑推理是交替进行的。

  让学生享受数学的有趣:可利用愉快的游戏、生动的故事、激烈的竞赛、入境的表演、热情的掌声等创设出一种愉悦的学习情境,诱发学生的学习情趣;让学生时常感受到“数学真奇妙!”,从而产生“我也想试一试!”的心理。

  让学生享受数学的有用:借助生活情境,让学生寻找有关的数学问题,使学生体会到我们的生活中蕴涵着丰富的数学问题,感受数学学习在生活中的作用。

  让学生享受数学的精彩:创设一切机会让学生学会思考,乐于思考、善于思考,只有这样,数学才能展示其精彩的一面;在教学中可有意识地安排一些问题让学生多途径思考,发现答案有多种多样;让他们体味出更多的精彩!享受数学的成功:“教育教学的本质就是帮助学生成功。”一次成功的机会却可以十倍地增强学生的信心;因此,课堂上教师应毫不吝啬自己鼓励的眼神、赞许的话语,批改作业时尽量少一些令人生厌的“×”,可以写上“再算算”。

《圆周角》教学反思3

  本节课我以学生探究为主,配合多媒体辅助教学、在教学过程中,我注重教学与生活的联系,创设富有挑战性的问题情境,引导学生用数学的眼光看问题,发现规律,验证猜想、教学中注重学生的个体差异,让不同层次的学生充分参与到数学思维活动中来,充分发挥学生的主体作用、引导学生采用动手实践,自主探究,合作交流的学习方法进行学习,使学生在观察、实践中充分体验探索的快乐,发现新知,发展能力、

  这节课做的比较好的地方是:

  1、教学环节设计比较合理,尤其是对圆周角定理证明的处理。考虑到定理的后两种图形证明难度大,考试要求低,班级基础又弱,我采用了留作思考,个别点拨的方法,帮助学困生和中等生跳过这个“障碍",使得教学重难点没有被冲淡,教学目标比较明确,课时任务顺利完成。

  2、基本上做到让学生讲。在课堂上学生能说的老师不说,学生说不出来的老师引导着说,学生没有想到的老师补充着说。3、小组4人合作使用合理。充分调动小组合作的积极性和有效性,利用角落的一点地方,进行课堂评价,使学生课堂效率和学习积极性大增。

  这节课还留有很多的遗憾:引入部分的时间过多,使得时间分配不当,学生的练习不够充分。由于时间把握不好,导致设计的对于每个知识点都应该有一个练习与之对应没有很好完成,使学生对本节课的几个知识点不够明确,应用会有点生涩。


《圆周角》教学反思3篇扩展阅读


《圆周角》教学反思3篇(扩展1)

——圆周角教案10篇

圆周角教案1

  教材分析

  1本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角性质的探索。

  2.圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,在对圆与其他*面图形的研究中起着桥梁和纽带的作用。

  学情分析

  九年级的学生虽然已具备一定的说理能力,但逻辑推理能力仍不强,根据数学的认知规律,数学思想的学习不可能“一步到位”,应当逐步递进、螺旋上升。 在具体的问题情境下,引导学生采用动手实践、自主探究、合作交流的学习方法进行学习,充分发挥其主体的积极作用,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发挥潜能,使知识和能力得到内化,体现“主动获取,落实双基,发展能力”的原则。

  教学目标

  (1)知识目标:

  1、理解圆周角的概念。

  2、经历探索圆周角与它所对的弧的关系的过程,了解并证明圆周角定理及其推论。

  3、有机渗透“由特殊到一般”、“分类”、“化归”等数学思想方法。

  (2)能力目标:

  引导学生从形象思维向理性思维过渡,有意识地强化学生的推理能力,培养学生的实践能力与创新能力,提高数学素养。

  (3)情感、态度与价值观的目标:

  1、创设生活情境激发学生对数学的好奇心、求知欲,营造“民主”“和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验。

  2、培养学生以严谨求实的态度思考数学。

  教学重点和难点

  探索并证明圆周角与它所对的弧的关系是本课时的重点。

  用分类、化归思想合情推理验证“圆周角与它所对的弧的关系”是本课时的难点。

圆周角教案2

  【教材分析】

  本节是人教版高中《物理》必修2第五章第7节,是《曲线运动》一章的最后一节。学习本节内容既是对圆周运动规律的复习与巩固,又是后面继续学习天体运动规律的基础,具有承上启下的作用。教材安排了铁路的弯道,汽车过拱桥,航天器中的失重现象,离心现象四个方面的内容,如果面面俱到,难免会蜻蜓点水,为了在教学中突出重点、分散难点,我将教材内容进行了重新整合,分两课时完成。本课为第一课时主要讨论铁路弯道的设计意图。

  【学情分析】

  通过前面的学习,学生已经对圆周运动有了较为清晰地认识,但是对于向心力的概念理解还不够深入。同时高一的学生思维活跃,求知欲强,他们很希望参与到课堂中来,自主的解决问题。

  【三维学习目标】

  过程与方法

  知识与技能

  情感态度和价值观

  经历观察思考,自主探究,交流讨论等活动

  进一步理解向心力的概念。

  能在具体问题中找到向心力的来源

  培养学生的团队精神,合作意识;感悟科学的严肃性,培养学生严谨的学风

  教学重点和难点:在具体问题中找到向心力的来源

  【教学策略】

  1.教法:使用情境激趣、设疑引导、适时点拨的方式引领学生的学习;

  2.学法:学生在教师的引领下,通过观察现象、自主探究、交流讨论等方式参与到课堂中来,体验求知乐趣,成为学习的主人。

  3.教学资源:

  (1)多媒体课件;

  (2)演示教具:电动仿真火车;

  (3)自制教具:车轮模型、弯道模型;

  (4)分组探究教具:仿真火车和轨道模型、橡皮泥、一次性纸杯和小球。

  【教学过程】

  一、设置情景、引入新课

  首先,播放一段描述火车转弯时脱轨的事故的视频,将学生的注意力吸引到火车转弯这一具体情境中来。我就此提出两个问题:

  1.火车转弯时的限定速度是怎样规定的?

  2.火车超速时为什么容易造成脱轨事故?学生带着问题进入课堂,既引起了他们的兴趣,又为他们的学习指明了方向。

  二、复习巩固、明确方法

  我通过提问的方式,帮助学生回忆计算向心力的常用公式,然后,设置情景,让学生对做圆周运动的物体做出受力分析并找到向心力的来源。

  情景一:物块随圆盘做匀速圆周运动。

  情景二:小球在杯子内壁做圆周运动。此情景并没有直接展示给学生,而是提出问题:“你能不用手接触小球,而不使小球落入杯底吗?注意,要保证杯口朝上。”让学生自己设计出小球的运动方式,并对杯中小球的运动情况作出受力分析。通过这种方式让学生参与到课堂中来,提高了学生的学习兴趣。而后,教师做出总结:分析圆周运动问题,就是要通过运动分析求出物体需要多大的向心力,通过受力分析找到谁在提供向心力,从而建立供需*衡方程,这是解决圆周运动问题的一般思路。

  三、设疑引导、自主探究

  这一部分集中了本节的重点和难点,为了降低学习难度,我巧设梯度,从以下三个部分组织教学:

  1.认识火车车轮的结构特点

  首先教师使用教具──电动模型小火车,分别展示火车在水*桌面和水*弯曲轨道上的运动,学生通过观察和对比,认识到火车转弯要靠铁轨和车轮的作用。然后,学生使用分组探究教具──仿真小火车(如图),观察车轮和轨道结构,描述火车车轮结构特点。学生遇到困难时,教师利用自制教具──模型车轮,加深学生对车轮结构的印象,并提示学生思考车轮轮缘的作用。

  进一步提出问题:生活中还有什么地方用到了类似的轮子结构?通过学生的回答,和图片的展示(学校门口的电动拉门的轮子),使学生认识到这一结构在生活中也是常见的,从而拓展了学生的认识。接着提问学生:你认为火车在水*轨道上转弯时向心力来自哪里?经过观察和思考,学生已经不难想到向心力的来源。而后追问:你认为这样的转弯方式有什么弊端吗?学生通过思考,结合上课之初播放的视频,不难回答出这样做的危害性。

  2.真实的火车弯道的情况

  那么设计师有什么好的方法吗?通过提问,了解学生对实际铁路弯道特点的认识情况。而后通过图片,使学生认识铁路弯道处内轨低而外轨高的特点;从而发出疑问,弯道处这样设计的用意何在呢?

  提示学生从受力分析入手,找到此时向心力的来源,并要求学生画出受力分析图。

  除了正确的分析外,学生很可能将重力与支持力的合力画成沿斜面向下,这是对弯道的圆心位置分析不清造成的,对学生可能做出的两种向心力的方向,我不直接评论对错,而是使用分组探究教具──橡皮泥,引导学生自己做出一段铁路的弯道处的路基。我使用自制教具,展示给学生弯道处路基的特点,让学生的制作有所参照。学生在合作中,制作出一段路基的形状。培养了学生的动手能力和交流合作的能力。弯道做成后,学生一般并不能由此直接找到向心力的正确方向,此时,我提示学生将橡皮泥做成的部分弯道拉长、补合为一个完整的环形弯道,学生不难发现,弯道的内侧与碗的内壁相似,进而认识到和杯子内壁的相似性,把小球在杯子内壁的运动与火车在弯道处的运动作对比分析。经过这样两步,学生已经不难得出正确的受力分析。成功的突破了这一教学难点。

  然后趁热打铁,引导学生从定性到定量,写出重力与支持力的合力的表达式,为下一步的学习做好准备。

  3.假如你是设计师

  为了解决开课时提出的两个问题,我设计了第三部分──假如你是设计师。

  首先,设置情境:你设计了一段半径为r,倾角为θ的铁路弯道,你会如何规定火车转弯的速度?提示学生从解决圆周运动一般本思路出发,从供需*衡关系入手,列出方程,从而得出限定速度的表达式。从表达式的得出过程,引导学生理解,限定速度的规定实际是为了保证由重力和支持力的合力提供向心力,从而避免车轮和铁轨间的挤压,保证行车安全。

  接着,通过演示实验,让学生观察在杯内转动过快的小球从杯中飞出的过程,提示学生思考,如果火车速度过快会怎么样呢?学生已经不难认识到火车速度过快会使火车脱轨的问题。而后引导学生用供需*衡条件来解释这一问题,深化了学生认识。为了突出重点,这里不提出离心现象这一问题。只是通过现象的分析和认识为离心现象的教学做好铺垫。

  四、总结方法、完善认识

  通过本节的教学不仅要使学生认识到解决圆周运动问题的一般方法,更重要的是使他们认识到火车转弯的模型在生活中是普遍存在的,认识到生活中的简单现象往往就是解决实际问题的灵感的来源。进一步启发学生,还有哪些生活中的运动也使用了相同的设计思想?使学生认识到自行车转弯、汽车转弯也有相似的情况,从而从特殊到一般,深化学生的认识。同时通过对事故原因的科学分析,使学生认识到尊重规律的重要性,培养学生严谨的学习态度。

  五、布置作业、课后拓展

  课后作业是学生再学习的重要途径,本节课后我安排了两项作业。旨在让学生巩固知识的同时,认识物理与社会的联系,将对学生的知识教育和情感教育引向课外。

  1.课后练习1、2题。

  2.了解*铁路提速情况,查找资料,提出你对铁路建设的建议。

  【板书设计】

  【总体设计思想】

  本节课的设计思想是借助问题给学生一个思维的支点,在教师的引领下,从分析生活中的简单现象入手,找到一般规律。在新的问题情境中思考、发现生活中的模型。通过类比,把日常生活中的知识联系到新问题的解决当中,在加深知识理解的过程中,也培养了分析应用能力。同时,通过对事故原因的分析,培养学生严谨科学的分析方法和认真负责的工作态度。体现“从生活走向物理、从物理走向社会”的物理教学理念。

圆周角教案3

  教学任务分析

  教学目标

  知识技能

  1.了解圆周角与圆心角的关系.

  2.掌握圆周角的性质和直径所对圆周角的特征.

  3.能运用圆周角的性质解决问题.

  数学思考

  1.通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.

  2.通过观察图形,提高学生的识图能力.

  3.通过引导学生添加合理的辅助线,培养学生的创造力.

  解决问题

  在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题

  情感态度

  引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.

  重点

  圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征.

  难点

  发现并论证圆周角定理.

  教学流程安排

  活动流程图

  活动内容和目的

  活动1 创设情景,提出问题

  活动2 探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系

  活动3 发现并证明圆周角定理

  活动4 圆周角定理应用

  活动5 小结,布置作业

  从实例提出问题,给出圆周角的定义.

  通过实例观察、发现圆周角的特点,利用度量工具,探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系.

  探索圆心与圆周角的位置关系,利用分类讨论的数学思想证明圆周角定理.

  反馈练习,加深对圆周角定理的理解和应用.

  回顾梳理,从知识和能力方面总结本节课所学到的东西.

  教学过程设计

  问题与情境

  师生行为

  设计意图

  [活动1 ]

  问题

  演示课件或图片(教科书图24.1-11):

  (1)如图:同学甲站在圆心的位置,同学乙站在正对着玻璃窗的靠墙的位置,他们的视角(和)有什么关系?

  (2)如果同学丙、丁分别站在其他靠墙的位置和,他们的视角(和)和同学乙的视角相同吗?

  教师演示课件或图片:展示一个圆柱形的海洋馆.

  教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物.

  教师出示海洋馆的横截面示意图,提出问题.

  教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧()所对的圆心角()与圆周角()、同弧所对的圆周角(、、等)之间的大小关系.教师引导学生进行探究.

  本次活动中,教师应当重点关注:

  (1)问题的提出是否引起了学生的兴趣;

  (2)学生是否理解了示意图;

  (3)学生是否理解了圆周角的定义.

  (4)学生是否清楚了要研究的数学问题.

  从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学.

  将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法.

  引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的`体验,建立学习的自信心.

  [活动2]

  问题

  (1)同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?

  (2)同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?

  教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.

  由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.

  教师再利用几何画板从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化:

  (1)拖动圆周角的顶点使其在圆周上运动;

  (2)改变圆心角的度数;3.改变圆的半径大小.

  本次活动中,教师应当重点关注:

  (1)学生是否积极参与活动;

  (2)学生是否度量准确,观察、发现的结论是否正确.

  活动2的设计是为 引导学生发现.让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论.激发学生的求知欲望,调动学生学习的积极性.教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系.

  [活动3]

  问题

  (1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?

  (2)当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?

  (3)另外两种情况如何证明,可否转化成第一种情况呢?

  教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.

  教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充.

  教师演示圆心与圆周角的三种位置关系.

  本次活动中,教师应当重点关注:

  (1)学生是否会与人合作,并能与他人交流思维的过程和结果.

  (2)学生能否发现圆心与圆周角的三种位置关系.学生是否积极参与活动.

  教师引导学生从特殊情况入手证明所发现的结论.

  学生写出已知、求证,完成证明.

  学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.教师讲评学生的证明,板书圆周角定理.

  本次活动中,教师应当重点关注:

  (1)学生是否会想到添加辅助线,将另外两种情况进行转化

  (2)学生添加辅助线的合理性.

  (3)学生是否会利用问题2的结论进行证明.

  数学教学是在教师的引导下,进行的再创造、再发现的教学.通过数学活动,教给学生一种科学研究的方法.学会发现问题,提出问题,分析问题,并能解决问题.活动3的安排是让学生对所发现的结论进行证明.培养学生严谨的治学态度.

  问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题.培养学生思维的深刻性.

  问题2、3的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般.学会运用化归思想将问题转化.并启发培养学生创造性的解决问题

  [活动4]

  问题

  (1)半圆(或直径)所对的圆周角是多少度?

  (2)90°的圆周角所对的弦是什么?

  (3)在半径不等的圆中,相等的两个圆周角所对的弧相等吗?

  (4)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

  (5)如图,点、、、在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?

  (6)如图, ⊙O的直径AB 为10cm,弦AC 为6cm, ∠ACB的*分线交⊙O于D, 求BC、AD、BD的长.

  学生独立思考,回答问题,教师讲评.

  对于问题(1),教师应重点关注学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数.

  对于问题(2),教师应重点关注学生是否能由90°的圆周角推出同弧所对的圆心角的度数是180°,从而得出所对的弦是直径.

  对于问题(3),教师应重点关注学生能否得出正确的结论,并能说明理由.教师提醒学生:在使用圆周角定理时一定要注意定理的条件.

  对于问题(4),教师应重点关注学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等.

  对于问题(5),教师应重点关注学生是否准确找出同弧上所对的圆周角.

  对于问题(6),教师应重点关注

  (1)学生是否能由已知条件得出直角三角形ABC、ABD;

  (2)学生能否将要求的线段放到三角形里求解.

  (3)学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD.

  活动4的设计是圆周角定理的应用.通过4个问题层层深入,考察学生对定理的理解和应用.问题1、2是定理的推论,也是定理在特殊条件下得出的结论.问题3的设计目的是通过举反例,让学生明确定理使用的条件.问题4是定理的引申,将本节课的内容与所学过的知识紧密的结合起来,使学生很好地进行知识的迁移.问题5、6是定理的应用.即时反馈有助于记忆,让学生在练习中加深对本节知识的理解.教师通过学生练习,及时发现问题,评价教学效果.

  [活动5]

  小结

  通过本节课的学习你有哪些收获?

  布置作业.

  (1)阅读作业:阅读教科书P90—93的内容.

  (2)教科书P94 习题24.1第2、3、4、5题.

  教师带领学生从知识、方法、数学思想等方面小结本节课所学内容.

  教师关注不同层次的学生对所学内容的理解和掌握.

  教师布置作业.

  通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.

  增加阅读作业目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解.

  课后巩固作业是对课堂所学知识的检验,是让学生巩固、提高、发展.

圆周角教案4

  教材依据

  圆周角是新课标人教版九年级数学上册第二十四章第一节圆的有关性质的重要内容,本节内容依据新人教版九年级《课程标准》和《教师教学用书》及《初中数学新教材详解》。

  设计思想

  本节课是在学习了圆心角的定义、性质定理和推论的基础上,由生活实例引出圆周角,类比圆心角认识圆周角,类比圆心角的性质探究圆周角定理,精选例题及习题对本节内容进行迁移应用。

  在教学过程中本着“以人为本,让课堂变为学堂,把时间和空间更多地留给学生”为原则,注重学生的实践活动,通过让学生作图、度量、分析、猜想、验证得出结论,教学过程中充分利用学生已有的认知水*,由浅入深、逐层递进,并能适时地应用直观教具引导学生运用分类讨论及转化的数学思想对圆周角定理进行证明,化解本节课的难点。这样学生易于接受新知识,也能很快地理解并掌握圆周角定理的内容,同时给学生自主探索留有很大空间,让学生在实践探究、合作交流活动中,亲身体验应用数学的乐趣和成功的喜悦,发展学生的思维,培养学生的多种学习能力。

  教学目标

  1.知识与技能

  (1)理解圆周角的概念,掌握圆周角定理,并运用它进行简单的论证和计算。

  (2)经历圆周角定理的证明,使学生初步学会运用分类讨论的数学思想和转化的数学思想解决问题。

  2.过程与方法

  采用“活动与探究”的学习方法,由感性到理性、由简单到复杂、由特殊到一般的思维过程研究新知识,引导学生理解知识的发生发展过程,并使学生能应用所学知识解决简单的实际问题。

  3.情感、态度与价值观

  通过学生探索圆周角定理,自主学习、合作交流的学习过程,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习数学的自信心。

  教学重点

  圆周角的概念、圆周角定理及应用。

  教学难点

  圆周角定理的探究过程及定理的应用。

  教学准备

  学生:圆规、量角器、尺子

  教师:多媒体课件、活动教具

  教学过程

  一、 创设情景,引入新课

  大屏幕显示学生熟悉的画面(足球射门游戏)

  足球场有句顺口溜:“冲向球门跑,越近就越好;歪着球门跑,射点要选好。”其中蕴藏了一定的数学道理,学习了本节课,我们就可以解释其中的道理。

  二、实践探索,揭示新知

  (一)圆周角的概念

  在射门游戏中,球员射中球门的难易程度与他所处的位置B对球门AC的张角∠ABC有关.(教师出示图片,提出问题)

  图中∠ABC是圆心角吗?什么是圆心角?图中∠ABC有什么特点?

  (学生通过与圆心角的类比、分析、观察得出∠ABC的特点,进而概括出圆周角的概念,教师引导并板书)

  定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

  概念辨析:

  判断下列各图形中的角是不是圆周角,并说明理由。(图略)

  (通过概念辨析,让学生理解圆周角的定义,提高学生的语言表达能力,教师强调知识要点)

  强调:圆周角必须具备的两个条件:①顶点在圆上;②两边都与圆相交.

  (二)圆周角定理

  1.提出问题,引发思考

  类比圆心角的结论:同弧或等弧所对的圆心角相等。提出本节课研究的问题:同弧或等弧所对的圆周角相等吗?为了搞清这个问题,我们可以先研究:同弧所对的圆心角和圆周角的关系。

  2.活动与探究

  画一个圆心角,然后再画同弧所对的圆周角。你能画多少个圆周角? 用量角器量一量这些圆周角及圆心角的度数,你有何发现呢?

  (教师提出问题,学生作图、度量、分析、归纳出发现的结论。)

  结论:(1)同一条弧所对的圆周角有无数个,同弧所对的任意一个圆周角都相等。

  (2)同一条弧所对的圆周角等于它所对的圆心角的一半.

  由上述操作可以看出:同一条弧所对的任意一个圆周角都等于该条弧所对的圆心角的一半。

  (学生通过实践探究,讨论概括出结论,教师点评)

  3.推理与论证

  (1)教师演示活动教具,一条弧所对的圆心角只有一个,所对的圆周角有无数个,我们没有办法一一论证,提出本节课研究方法:分类讨论法。

  (教师演示,引导学生观察圆心与圆周角的位置关系,学生观察、小组交流,最后得出结论,教师出示圆心和圆周角的三种位置关系图片)

  (2)分类讨论,证明结论 ① 当圆心在圆周角的一条边上时,如何证明?(从特殊情况入手,学生通过观察、分析、讨论,证明所发现的结论,教师鼓励学生看清此数学模型。)

  ②另外两种情况如何证明,可否转化成第一种情况呢?

  (学生采取小组合作的学习方式进行探索发现,教师巡视指导,启发并引导学生,通过添加辅助线,将问题进行转化,学生写出证明过程,并讨论归纳出结论,教师做出点评)

  结论:在同圆中,同弧所对的圆周角相等,都等于该条弧所对圆心角的一半

  4.变式拓展,引出重点

  将上述结论改为“在同圆或等圆中,等弧所对的圆周角相等吗?

  (学生思考、推理、讨论、总结出圆周角定理,教师板书)

  圆周角定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

  强调:(1)定理的适用范围:同圆或等圆(2)同弧或等弧所对的圆周角相等(3)同弧或等弧所对的圆周角等于它所对圆心角的一半

  (教师强调圆周角定理的内容,学生思考、默记、熟悉定理,加深对定理的理解)

  三、应用练习,巩固提高

  1.范例精析:

  例:如图,在⊙O中,∠CBD=30° ,∠BDC=20°,求∠A(图略)

  (鼓励学生用多种方法解决问题,发散学生的思维,培养学生良好的思维品质,让学生书写推力计算过程,教师补充、点评、并和学生一起归纳解法。两种解法分别应用了圆周角定理中的两个结论,进一步对本节课的重点知识熟练深化,同时又培养了学生规范的书写表达能力)

  2.应用迁移:

  (1)比比看谁算得快:(图略)

  (本小题既可巩固圆周角定理,又可培养学生的竞争意识以适应时代的要求,同时对回答问题积极准确的学生提出表扬,激发学生的学习积极性)

  (2)生活中的数学

  如图.在足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同伴乙已经冲到B点,这时甲是直接射门好,还是将球传给乙,让乙射门好﹙仅从射门角度考虑﹚(图略)

  (选用学生熟悉的生活材料,让学生通过合作交流,讨论找出合理的解答方法,通过本小题的练习,使学生体味到生活离不开数学,从而激发学生应用数学的意识)

  四、总结评价,感悟收获

  通过本节课的学习你有哪些收获?(学生归纳总结,老师点评)

  知识:(1)圆周角的定义;

  (2)圆周角定理。

  能力:观察、操作、分析、归纳、表达等能力.

  思想方法:分类讨论思想、转化思想、类比思想、数形结合思想、

  五、作业设计,查漏补缺

  1.课本习题:P88.1,2,3,P89.5,P124.11

  2.在⊙O中,圆心角∠AOB=70°,点C是⊙O上异于A、B的一点,求圆周角∠AOB的度数。

  3.生活中的数学:监控器的监控范围是65度,圆形的博物馆内需要安装几盏才能全方位监控?(图略)

  (设计课本习题与课外拓展作业,不仅可以使学生对本节课的知识加以巩固、提高和查漏补缺,而且让学生会用数学的眼光和头脑去观察和思考世界,达到学以致用)

  教学反思

  成功之处:本节课内容丰富,结构合理,设计精细。教学时能根据学生实际遵循认知规律,由浅入深,循序渐进,及时了解学生的学习情况,灵活调整教学内容。能适时的用教材又不拘泥于教材,挖掘教材的多种功能,在教学结构的安排上也体现了新课标、新理念,重视学生自主学习、自主探究、合作交流、主动地观察与思考,各个环节衔接紧密、合理、流畅,教学效果比较理想。

  不足之处:学生不易理解用分类讨论思想证明圆周角定理,在后面的教学中逐步让学生了解分类讨论思想在解题时的应用。另外学生语言表达的准确性还需不断加强。

圆周角教案5

  教学目标:

  (1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;

  (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

  (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.

  教学重点:

  圆周角的概念和圆周角定理

  教学难点:

  圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.

  教学活动设计:(在教师指导下完成)

  (一)圆周角的概念

  1、复习提问:

  (1)什么是圆心角?

  答:顶点在圆心的角叫圆心角.

  (2)圆心角的度数定理是什么?

  答:圆心角的度数等于它所对弧的度数.(如右图)

  2、引题圆周角:

  如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)

  定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角

  3、概念辨析:

  教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.

  学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.

  (二)圆周角的定理

  1、提出圆周角的度数问题

  问题:圆周角的度数与什么有关系?

  经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.

  (在教师引导下完成)

  (1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.

  提出必须用严格的数学方法去证明.

  证明:(圆心在圆周角上)

  (2)其它情况,圆周角与相应圆心角的关系:

  当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.

  证明:作出过C的直径(略)

  圆周角定理:一条弧所对的

  周角等于它所对圆心角的一半.

  说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)

  (三)定理的应用

  1、例题:如图OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.

  求证:∠ACB=2∠BAC

  让学生自主分析、解得,教师规范推理过程.

  说明:①推理要严密;②符号“”应用要严格,教师要讲清.

  2、巩固练习:

  (1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?

  (2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?

  说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.

  (四)总结

  知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.

  思想方法:一种方法和一种思想:

  在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.

  (五)作业教材P100中习题A组6,7,8

圆周角教案6

  教材依据

  圆周角是新课标人教版九年级数学上册第二十四章第一节圆的有关性质的重要内容,本节内容依据新人教版九年级《课程标准》和《教师教学用书》及《初中数学新教材详解》。

  设计思想

  本节课是在学习了圆心角的定义、性质定理和推论的基础上,由生活实例引出圆周角,类比圆心角认识圆周角,类比圆心角的性质探究圆周角定理,精选例题及习题对本节内容进行迁移应用。

  在教学过程中本着“以人为本,让课堂变为学堂,把时间和空间更多地留给学生”为原则,注重学生的实践活动,通过让学生作图、度量、分析、猜想、验证得出结论,教学过程中充分利用学生已有的认知水*,由浅入深、逐层递进,并能适时地应用直观教具引导学生运用分类讨论及转化的数学思想对圆周角定理进行证明,化解本节课的难点。这样学生易于接受新知识,也能很快地理解并掌握圆周角定理的内容,同时给学生自主探索留有很大空间,让学生在实践探究、合作交流活动中,亲身体验应用数学的乐趣和成功的喜悦,发展学生的思维,培养学生的多种学习能力。

  教学目标

  1.知识与技能

  (1)理解圆周角的概念,掌握圆周角定理,并运用它进行简单的论证和计算。

  (2)经历圆周角定理的证明,使学生初步学会运用分类讨论的数学思想和转化的数学思想解决问题。

  2.过程与方法

  采用“活动与探究”的学习方法,由感性到理性、由简单到复杂、由特殊到一般的思维过程研究新知识,引导学生理解知识的发生发展过程,并使学生能应用所学知识解决简单的实际问题。

  3.情感、态度与价值观

  通过学生探索圆周角定理,自主学习、合作交流的学习过程,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习数学的自信心。

  教学重点

  圆周角的概念、圆周角定理及应用。

  教学难点

  圆周角定理的探究过程及定理的应用。

  教学准备

  学生:圆规、量角器、尺子

  教师:多媒体课件、活动教具

  教学过程

  一、创设情景,引入新课

  大屏幕显示学生熟悉的画面(足球射门游戏)

  足球场有句顺口溜:“冲向球门跑,越近就越好;歪着球门跑,射点要选好。”其中蕴藏了一定的数学道理,学习了本节课,我们就可以解释其中的道理。

  二、实践探索,揭示新知

  (一)圆周角的概念

  在射门游戏中,球员射中球门的难易程度与他所处的位置B对球门AC的张角∠ABC有关.(教师出示图片,提出问题)

  图中∠ABC是圆心角吗?什么是圆心角?图中∠ABC有什么特点?

  (学生通过与圆心角的类比、分析、观察得出∠ABC的特点,进而概括出圆周角的概念,教师引导并板书)

  定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

  概念辨析:

  判断下列各图形中的角是不是圆周角,并说明理由。(图略)

  (通过概念辨析,让学生理解圆周角的定义,提高学生的语言表达能力,教师强调知识要点)

  强调:圆周角必须具备的两个条件:①顶点在圆上;②两边都与圆相交.

  (二)圆周角定理

  1.提出问题,引发思考

  类比圆心角的结论:同弧或等弧所对的圆心角相等。提出本节课研究的问题:同弧或等弧所对的圆周角相等吗?为了搞清这个问题,我们可以先研究:同弧所对的圆心角和圆周角的关系。

  2.活动与探究

  画一个圆心角,然后再画同弧所对的圆周角。你能画多少个圆周角?用量角器量一量这些圆周角及圆心角的度数,你有何发现呢?

  (教师提出问题,学生作图、度量、分析、归纳出发现的结论。)

  结论:(1)同一条弧所对的圆周角有无数个,同弧所对的任意一个圆周角都相等。

  (2)同一条弧所对的圆周角等于它所对的圆心角的一半.

  由上述操作可以看出:同一条弧所对的任意一个圆周角都等于该条弧所对的圆心角的一半。

  (学生通过实践探究,讨论概括出结论,教师点评)

  3.推理与论证

  (1)教师演示活动教具,一条弧所对的圆心角只有一个,所对的圆周角有无数个,我们没有办法一一论证,提出本节课研究方法:分类讨论法。

  (教师演示,引导学生观察圆心与圆周角的位置关系,学生观察、小组交流,最后得出结论,教师出示圆心和圆周角的三种位置关系图片)

  (2)分类讨论,证明结论①当圆心在圆周角的一条边上时,如何证明?(从特殊情况入手,学生通过观察、分析、讨论,证明所发现的结论,教师鼓励学生看清此数学模型。)

  ②另外两种情况如何证明,可否转化成第一种情况呢?

  (学生采取小组合作的学习方式进行探索发现,教师巡视指导,启发并引导学生,通过添加辅助线,将问题进行转化,学生写出证明过程,并讨论归纳出结论,教师做出点评)

  结论:在同圆中,同弧所对的圆周角相等,都等于该条弧所对圆心角的一半

  4.变式拓展,引出重点

  将上述结论改为“在同圆或等圆中,等弧所对的圆周角相等吗?

  (学生思考、推理、讨论、总结出圆周角定理,教师板书)

  圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

  强调:(1)定理的适用范围:同圆或等圆(2)同弧或等弧所对的圆周角相等(3)同弧或等弧所对的圆周角等于它所对圆心角的一半

  (教师强调圆周角定理的内容,学生思考、默记、熟悉定理,加深对定理的理解)

  三、应用练习,巩固提高

  1.范例精析:

  例:如图,在⊙O中,∠CBD=30°,∠BDC=20°,求∠A(图略)

  (鼓励学生用多种方法解决问题,发散学生的思维,培养学生良好的思维品质,让学生书写推力计算过程,教师补充、点评、并和学生一起归纳解法。两种解法分别应用了圆周角定理中的两个结论,进一步对本节课的重点知识熟练深化,同时又培养了学生规范的书写表达能力)

  2.应用迁移:

  (1)比比看谁算得快:(图略)

  (本小题既可巩固圆周角定理,又可培养学生的竞争意识以适应时代的要求,同时对回答问题积极准确的学生提出表扬,激发学生的学习积极性)

  (2)生活中的数学

  如图.在足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同伴乙已经冲到B点,这时甲是直接射门好,还是将球传给乙,让乙射门好﹙仅从射门角度考虑﹚(图略)

  (选用学生熟悉的生活材料,让学生通过合作交流,讨论找出合理的解答方法,通过本小题的练习,使学生体味到生活离不开数学,从而激发学生应用数学的意识)

  四、总结评价,感悟收获

  通过本节课的学习你有哪些收获?(学生归纳总结,老师点评)

  知识:(1)圆周角的定义;

  (2)圆周角定理。

  能力:观察、操作、分析、归纳、表达等能力.

  思想方法:分类讨论思想、转化思想、类比思想、数形结合思想、

  五、作业设计,查漏补缺

  1.课本习题:P88.1,2,3,P89.5,P124.11

  2.在⊙O中,圆心角∠AOB=70°,点C是⊙O上异于A、B的一点,求圆周角∠AOB的度数。

  3.生活中的数学:监控器的监控范围是65度,圆形的博物馆内需要安装几盏才能全方位监控?(图略)

  (设计课本习题与课外拓展作业,不仅可以使学生对本节课的知识加以巩固、提高和查漏补缺,而且让学生会用数学的眼光和头脑去观察和思考世界,达到学以致用)

  教学反思

  成功之处:本节课内容丰富,结构合理,设计精细。教学时能根据学生实际遵循认知规律,由浅入深,循序渐进,及时了解学生的学习情况,灵活调整教学内容。能适时的用教材又不拘泥于教材,挖掘教材的多种功能,在教学结构的安排上也体现了新课标、新理念,重视学生自主学习、自主探究、合作交流、主动地观察与思考,各个环节衔接紧密、合理、流畅,教学效果比较理想。

  不足之处:学生不易理解用分类讨论思想证明圆周角定理,在后面的教学中逐步让学生了解分类讨论思想在解题时的应用。另外学生语言表达的准确性还需不断加强。

圆周角教案7

  教学目标:

  1、复习圆周长公式;

  2、理解弧长公式.

  3、通过弧长公式的推导,培养学生抽象、理解、概括、归纳能力;

  4、通过“弯道”问题的解决,培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力.

  教学重点:

  弧长公式.

  教学难点:

  正确理解弧长公式.

  教学过程:

  一、新课引入:

  前一阶段我们学习了圆的有关概念,知道圆上两点之间的部分叫做弧.弧的度数前面已经学过了,弧应当有长度,弧的长度应如何求呢?小学我们学了圆周长公式,怎样通过圆周长求出弧长,这正是我们这节课所要研究的内容.

  二、新课讲解:

  由于生产、生活实际中常遇到有关弧的长度计算,学过圆的有关性质和小学学过圆周长的基础,研究弧长公式已呈水到渠成之势,所以本节课以推导弧长公式为重点并应用弧长公式解决某些简单的实际问题,在计算过程中常出现由于对“n”理解上的错误而影响计算结果的正确

  清楚n°圆心角所对弧长是1°弧长的n倍.

  (复习提问):1.已知⊙o半径为r,⊙o的周长c是多大?(安排中下生回答:c=2πr),2.已知⊙o的周长是c,⊙o的"半径r等

  幻灯给出例1,已知:如图7-155,圆环的外圆周长c1=250cm,内圆周长c2=150cm,求圆环的宽度d(精确到1mm).

  圆环的宽度与同心圆半径有什么关系?(安排中学生回答,d=r1-r2)请同学们完成此题,(安排一名学生上黑板做,其余同学在下面做)(d≈15.9cm)

  我们知道,把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角,因为同圆中相等的圆心角所对弧相等,所以整个圆也被等分成360份,每一份这样的弧就是1°的弧,大家知道圆的周长是2πr,想想看1°的弧长应是多少?怎样求?(安排中等生回答:1°的弧长=

  (安排中下生回答)哪位同学回答,n°的圆心角所对的弧长l,应怎么求?

  (幻灯供题,学生计算,然后回答)

  1.边长6cm的正三角形,它的内切圆周长是___;它的外接圆的周

  2.边长4cm的正方形,它的内切圆周长是___;它的外接圆的周长

  3.周长6πcm的⊙o,其内接正六边形的边长是___;(3cm)

  4.已知⊙o的周长6πcm,则它的外切正方形的周长是___;(24cm)

  的半径是___(2cm)

  7.如果⊙o的半径3cm,其中一弧长2πcm,则这弧所对圆心角度数是___(120°)

  以上各题解决起来不太困难,所以应重点照顾中下学生.

  幻灯供题:已知圆的半径r=46.0cm,求18°31′的圆心角所对的弧长l(保留三个有效数字).(安排一中下生上黑板做此题,其余同学在下面完成.)

  分析素材.假如上黑板作题的学生先把18°31′化为18.52°后计的问题让学生们充分展开讨论.在讨论过后首先让先把18°31′化为18.52°后再代入公式计算的学生谈谈,他是怎么想的,最后由上等生或示1°的n倍,由于2°是1°的2倍,3°是1°的3倍,n°是1倍数n与圆心角的度数n°相对应.而这道题的圆心角是18°31′,所以需将31′换算成度才能得到公式中所需的n.(安排学生正确完成此题,答案,l≈14.9cm)

  请同学们再计算一题,已知圆的半径r=10cm,求18°42′的圆心角所对的弧长l.幻灯给出例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度l(单位:mm,精确到1mm)

  哪位同学到前面指出图7-155中所示的管道指的哪部分?(安排举手的同学)

  哪位同学告诉同学们这管道的展直长度l由图中哪几部分组成?(安排中下生回答)

  图中的弧所对圆心角等于多少度,它的半经是多少?(安排中下生回答)

  请大家动笔先计算图中的弧长,(l=500π≈1570mm)

  请同学们计算管道的展直长度.(l=2930mm)

  幻灯供题:有一段弯道是圆弧形的,道长是12m,弧所对的圆心角是81°,求这段弧的半径r(精确到0.1m)

  哪位同学到前面指出图7-157中的弯道?(安排中下生上前)

  道长12m指的是哪条弧的长12m?(安排中下生上前)

  请同学们计算出r的值,(约8.5m)

  三、课堂小结:

  本堂课复习了小学就学会的圆周长公式,在此基础上又学习了弧长公式、哪位同学能回答圆周长公式.弧长公式?(安排中下生回答:c=2)

  四、布置作业

  教材p.176中练习1、2、3;p.186中3

圆周角教案8

  【教材分析】

  本节是人教版高中《物理》必修2第五章第7节,是《曲线运动》一章的最后一节。学习本节内容既是对圆周运动规律的复习与巩固,又是后面继续学习天体运动规律的基础,具有承上启下的作用。教材安排了铁路的弯道,汽车过拱桥,航天器中的失重现象,离心现象四个方面的内容,如果面面俱到,难免会蜻蜓点水,为了在教学中突出重点、分散难点,我将教材内容进行了重新整合,分两课时完成。本课为第一课时主要讨论铁路弯道的设计意图。

  【学情分析】

  通过前面的学习,学生已经对圆周运动有了较为清晰地认识,但是对于向心力的概念理解还不够深入。同时高一的学生思维活跃,求知欲强,他们很希望参与到课堂中来,自主的解决问题。

  【三维学习目标】

  过程与方法

  知识与技能

  情感态度和价值观

  经历观察思考,自主探究,交流讨论等活动

  进一步理解向心力的概念。

  能在具体问题中找到向心力的来源

  培养学生的团队精神,合作意识;感悟科学的严肃性,培养学生严谨的学风

  教学重点和难点:在具体问题中找到向心力的来源

  【教学策略】

  1.教法:使用情境激趣、设疑引导、适时点拨的方式引领学生的学习;

  2.学法:学生在教师的引领下,通过观察现象、自主探究、交流讨论等方式参与到课堂中来,体验求知乐趣,成为学习的主人。

  3.教学资源:

  (1)多媒体课件;

  (2)演示教具:电动仿真火车;

  (3)自制教具:车轮模型、弯道模型;

  (4)分组探究教具:仿真火车和轨道模型、橡皮泥、一次性纸杯和小球。

  【教学过程】

  一、设置情景、引入新课

  首先,播放一段描述火车转弯时脱轨的事故的视频,将学生的注意力吸引到火车转弯这一具体情境中来。我就此提出两个问题:

  1.火车转弯时的限定速度是怎样规定的?

  2.火车超速时为什么容易造成脱轨事故?学生带着问题进入课堂,既引起了他们的兴趣,又为他们的学习指明了方向。

  二、复习巩固、明确方法

  我通过提问的方式,帮助学生回忆计算向心力的常用公式,然后,设置情景,让学生对做圆周运动的物体做出受力分析并找到向心力的来源。

  情景一:物块随圆盘做匀速圆周运动。

  情景二:小球在杯子内壁做圆周运动。此情景并没有直接展示给学生,而是提出问题:“你能不用手接触小球,而不使小球落入杯底吗?注意,要保证杯口朝上。”让学生自己设计出小球的运动方式,并对杯中小球的运动情况作出受力分析。通过这种方式让学生参与到课堂中来,提高了学生的学习兴趣。而后,教师做出总结:分析圆周运动问题,就是要通过运动分析求出物体需要多大的向心力,通过受力分析找到谁在提供向心力,从而建立供需*衡方程,这是解决圆周运动问题的一般思路。

  三、设疑引导、自主探究

  这一部分集中了本节的重点和难点,为了降低学习难度,我巧设梯度,从以下三个部分组织教学:

  1.认识火车车轮的结构特点

  首先教师使用教具──电动模型小火车,分别展示火车在水*桌面和水*弯曲轨道上的运动,学生通过观察和对比,认识到火车转弯要靠铁轨和车轮的作用。然后,学生使用分组探究教具──仿真小火车(如图),观察车轮和轨道结构,描述火车车轮结构特点。学生遇到困难时,教师利用自制教具──模型车轮,加深学生对车轮结构的印象,并提示学生思考车轮轮缘的作用。

  进一步提出问题:生活中还有什么地方用到了类似的轮子结构?通过学生的回答,和图片的展示(学校门口的电动拉门的轮子),使学生认识到这一结构在生活中也是常见的,从而拓展了学生的认识。接着提问学生:你认为火车在水*轨道上转弯时向心力来自哪里?经过观察和思考,学生已经不难想到向心力的来源。而后追问:你认为这样的转弯方式有什么弊端吗?学生通过思考,结合上课之初播放的视频,不难回答出这样做的危害性。

  2.真实的火车弯道的情况

  那么设计师有什么好的方法吗?通过提问,了解学生对实际铁路弯道特点的认识情况。而后通过图片,使学生认识铁路弯道处内轨低而外轨高的特点;从而发出疑问,弯道处这样设计的用意何在呢?

  提示学生从受力分析入手,找到此时向心力的来源,并要求学生画出受力分析图。

  除了正确的分析外,学生很可能将重力与支持力的合力画成沿斜面向下,这是对弯道的圆心位置分析不清造成的,对学生可能做出的两种向心力的方向,我不直接评论对错,而是使用分组探究教具──橡皮泥,引导学生自己做出一段铁路的弯道处的路基。我使用自制教具,展示给学生弯道处路基的特点,让学生的制作有所参照。学生在合作中,制作出一段路基的形状。培养了学生的动手能力和交流合作的能力。弯道做成后,学生一般并不能由此直接找到向心力的正确方向,此时,我提示学生将橡皮泥做成的部分弯道拉长、补合为一个完整的环形弯道,学生不难发现,弯道的内侧与碗的内壁相似,进而认识到和杯子内壁的相似性,把小球在杯子内壁的运动与火车在弯道处的运动作对比分析。经过这样两步,学生已经不难得出正确的受力分析。成功的突破了这一教学难点。

  然后趁热打铁,引导学生从定性到定量,写出重力与支持力的合力的表达式,为下一步的学习做好准备。

  3.假如你是设计师

  为了解决开课时提出的两个问题,我设计了第三部分──假如你是设计师。

  首先,设置情境:你设计了一段半径为r,倾角为θ的铁路弯道,你会如何规定火车转弯的速度?提示学生从解决圆周运动一般本思路出发,从供需*衡关系入手,列出方程,从而得出限定速度的表达式。从表达式的得出过程,引导学生理解,限定速度的规定实际是为了保证由重力和支持力的合力提供向心力,从而避免车轮和铁轨间的挤压,保证行车安全。

  接着,通过演示实验,让学生观察在杯内转动过快的小球从杯中飞出的过程,提示学生思考,如果火车速度过快会怎么样呢?学生已经不难认识到火车速度过快会使火车脱轨的问题。而后引导学生用供需*衡条件来解释这一问题,深化了学生认识。为了突出重点,这里不提出离心现象这一问题。只是通过现象的分析和认识为离心现象的教学做好铺垫。

  四、总结方法、完善认识

  通过本节的教学不仅要使学生认识到解决圆周运动问题的一般方法,更重要的是使他们认识到火车转弯的模型在生活中是普遍存在的,认识到生活中的简单现象往往就是解决实际问题的灵感的来源。进一步启发学生,还有哪些生活中的运动也使用了相同的设计思想?使学生认识到自行车转弯、汽车转弯也有相似的情况,从而从特殊到一般,深化学生的认识。同时通过对事故原因的科学分析,使学生认识到尊重规律的重要性,培养学生严谨的学习态度。

  五、布置作业、课后拓展

  课后作业是学生再学习的重要途径,本节课后我安排了两项作业。旨在让学生巩固知识的同时,认识物理与社会的联系,将对学生的知识教育和情感教育引向课外。

  1.课后练习1、2题。

  2.了解*铁路提速情况,查找资料,提出你对铁路建设的建议。

  【板书设计】

  【总体设计思想】

  本节课的设计思想是借助问题给学生一个思维的支点,在教师的引领下,从分析生活中的简单现象入手,找到一般规律。在新的问题情境中思考、发现生活中的模型。通过类比,把日常生活中的知识联系到新问题的解决当中,在加深知识理解的过程中,也培养了分析应用能力。同时,通过对事故原因的分析,培养学生严谨科学的分析方法和认真负责的工作态度。体现“从生活走向物理、从物理走向社会”的物理教学理念。

圆周角教案9

  教材分析

  1本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角性质的探索。

  2.圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,在对圆与其他*面图形的研究中起着桥梁和纽带的作用。

  学情分析

  九年级的学生虽然已具备一定的说理能力,但逻辑推理能力仍不强,根据数学的认知规律,数学思想的学习不可能“一步到位”,应当逐步递进、螺旋上升。在具体的问题情境下,引导学生采用动手实践、自主探究、合作交流的学习方法进行学习,充分发挥其主体的积极作用,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发挥潜能,使知识和能力得到内化,体现“主动获取,落实双基,发展能力”的原则。

  教学目标

  (1)知识目标:

  1、理解圆周角的概念。

  2、经历探索圆周角与它所对的弧的关系的过程,了解并证明圆周角定理及其推论。

  3、有机渗透“由特殊到一般”、“分类”、“化归”等数学思想方法。

  (2)能力目标:

  引导学生从形象思维向理性思维过渡,有意识地强化学生的推理能力,培养学生的实践能力与创新能力,提高数学素养。

  (3)情感、态度与价值观的目标:

  1、创设生活情境激发学生对数学的好奇心、求知欲,营造“民主”“和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验。

  2、培养学生以严谨求实的态度思考数学。

  教学重点和难点

  探索并证明圆周角与它所对的弧的关系是本课时的重点。

  用分类、化归思想合情推理验证“圆周角与它所对的弧的关系”是本课时的难点。

圆周角教案10

  教学目标:

  1、通过本节课的教学使学生能够系统地、掌握圆周角这大节的知识点.并能运用它准确地判断真假命题。

  2、熟练地掌握圆周角定理及三个推论,并能运用它们准确地证明和计算。

  3、结合本节课的教学培养学生准确地计算问题的能力;

  4、进一步培养学生观察、分析、归纳及逻辑思维能力.教学重点:圆周角定理及推论的应用.教学难点:理解圆周角定理及推论及辅助线的添加。

  教学过程:

  一、新课引入:本节课是圆周角的第三课时,是引导学生在掌握圆周角定义、圆周角定理及三个推论的基础上,进行的一节综合习题课.

  二、新课讲解:由于是一节综合习题课,教学一开始由学生总结本大节知识点,教师板书知识网络图,给学生一个完整的知识结构,便于学生进一步理解和掌握

  提问:

  (1)什么叫圆周角?圆周角有哪些性质?教师提出问题,学生回答问题,教师板书出知识网络图:

  (2)出示一组练习题(幻灯上).通过这组选择题巩固本节课所要用到的知识点,通过师生评价,使知识掌握更准确

  1、选择题:①、下列命题,是真命题的是[]a.相等的圆周角所对的弧相等b.圆周角的度数等于圆心角度数的一半c.90°的圆周角所对的弦是直径d.长度相等的弧所对的圆周角相等②下列命题中,假命题的个数

  (1)、顶点在圆上的角是圆周角

  (2)、等弧所对的圆周角相等

  (3)、同弦所对的圆周角相等

  (4)、*分弦的直径垂直于弦a.1.b.2.c.3.d.4.为了遵循素质教育的学生主体性、层次性的原则,题目的设计和选择要根据学生的实际情况,做到因材施教.教师在提问学生回答问题中分三个层次进行,使得不同层次的学生有所得.这组选择题是比较容易出错的概念问题,教师为了真正使学生理解和准确地应用,教师有意利用电脑画面演示,从生动而直观再现命题的正、反例子,把知识学习寓于趣味教学之中,大大激发学生的兴趣,从而加深对知识的深化.接下来和学生一起来分析例3.

  已知在⊙o中,直径ab为10cm,弦ac为6cm,∠acb的*分线交⊙o于d,求bc,ad和bd的长.分析,所要求的三线段bc,ad和bd的长,能否把这三条线段转化为是直角三角形的直角边问题,由于已知ab为⊙o的直径,可以得到△abc和△adb都是直角三角形,又因为cd*分∠acb,所以可得=,可以得到弦ad=db,这时由勾股定理可得到三条线段bc、ad、db的长.学生回答解题过程,教师板书:解:∵ab为直径,∴∠acb=∠adb=90°.在rt△abc中,∵cd*分∠acb,∴=.在等腰直角三角形adb中,接下来练习:练习1:教材p.96中1题.如图7-44,ab为⊙o的直径,弦ac=3cm,bc=4cm,cd⊥ab,垂足为d.求ad、bd和cd的长.分析第一种方法时,主要由学生自己完成.分析1:要求ad、bd、cd的长,

  ①ab的长,由于ab为⊙o的直径,所以可得到△abc是直角三角形,即可用勾股定理求出.

  ②求cd的长,因cd是rt△abc斜边ab上的高,所以可以根据三角形面积公式,得到cd×ab=ac·cb来解决.

  ③求db的长,用线段之间关系即可求出.方法二由教师分析解题过程:分析2:①求ab的长.(勾股定理)(cm).

  ④求bd的长,可用相似三角形也可以用线段之间关系解决.这道练习题的目的,教师引导学生对一些问题思维要开朗,不能只局限于一种,要善于引导学生发散性思维,一题多解.练习2:教材p.96中2题。

  已知:cd是△abc的中线,ab=2cd,∠b=60°.求证:△abc外接圆的半径等于cb.学生分析证明思路,教师适当点拨.证明过程由学生写在黑板上:证明:(法一)△abc外接圆的半径等于cb法。

  二:略

  三、课堂小结:师生共同从知识、技能、方法等方面进行

  小结:

  1、知识方面:

  2、技能方面:根据题意要会画图形,构造出直径上的圆周角,同弧所对的圆周角等。

  3、方法方面:①数形结合.

  ②一题多解.

  四、布置作业教材

  p.101中14题;p.102中3、4题。


《圆周角》教学反思3篇(扩展2)

——圆周角教学反思5篇

圆周角教学反思1

  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。*古代的几何学家研究几何是为了实用,是唯用是尚的。在勾股定理教学中反思如下:

  一转变师生角色,让学生自主学习。

  由同学们的作图,我们发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。当然作图存在着误差。可仍然证明不了我们的猜想是否正确。下面我们用拼图的方法再来验证一下。请同学们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明a2+b2=c2(学生分组讨论。)学生展示拼图方法,课件辅助演示。

  新课标下要求教师个人素质越来越高,教师自身要不断及时地学习新知识,接受新信息,对自己及时充电、更新,而且要具有诙谐幽默的语言表达能力。既要有领导者的组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。

  “教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1*方米到底有多大?因此,新课标要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。

  数学的创造性不能没有逻辑思维,学习数学可以帮助养成理性思考的习惯。数学并不是公式的堆垒,也不是图形的汇集,数学有逻辑性很强的体系。数学不是只强调计算与规则的课程,而是讲道理的课程。培养与运用逻辑思维,并不是不顾及学生的可接受性一味地片面强调推理的严密和体系的完整,而是既要体现逻辑推理的作用,又不片面夸大它。几何的教学体系有别于几何的科学体系,在几何教学中,讲道理并完全不等同于纯粹的形式证明,几何教学培养逻辑思维能力同样要有的放矢,循序渐进,从直观到抽象,从简单到复杂?? 二转变教学方式,让学生探索、研究、体会学习过程。

  学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于学生实践能力的培养非常不利的。现在的数学教学到处充斥着过量的、重复的、不断循环的、人为挖掘的训练。 学习的过程性:

  1.关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;

  2.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理. 学习的知识性:掌握勾股定理,体会数形结合的思想.

  试一试:我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面。请问这个水池的深度和芦苇的长度各是多少?

  新课标对几何内容的安排。安排采取了首先是直观和经验,接着是说理与抽象,最后是演绎

  的方案。以直线形为例,先借助直观认识一个直线形,进而借助多种手段合乎情理地发现它的某种几何性质,接着通过演绎推理把这个性质搞定。看上去,强化了直观和实验,弱化了推理,实际上,在这里直观和推理两者都很重要,而且两者之间互为支撑,有互逆的性质。让直观几何和推理几何并重,把发现和证明绑在一起,与传统的几何课程体系确有不同。说到几何,新课标对几何的重视程度丝毫没有减弱,而是在加强。例如直观和实验几何的触角已经伸向了小学低年级,同时欧氏几何的体系和内容差不多还是完整呈现。如果说有所弱化,就是具体要求降低了,这种降低主要体现在两个方面,一个是对推理几何的难度要求有所限制,另外是弱化了相似形和圆(包括圆与直线之间的关系)这块内容的证明部分。

  教材内容的丰富,充分激发了学生的学习积极性。教材编排了一些游戏性的智力题,引导学生发现数学规律,探索数学世界的奥秘,采用阅读一些数学小故事和数学发展史,丰富学生的数学知识和对世界数学文化的了解,充分激发了学生继续学习数学和发展数学的积极性,把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别侧重于培养学生认识事物,探索问题,解决实际的能力。让学生感兴趣且愿意学,并且接受知识是循序渐进的过程,随着数学知识的不断学习,也使学生亲身体会到了学习数学的重要意义:我们的生活中处处离不开数学,处处需要数学,学习数学也是非常有意思的。三提高教学科技含量,充分利用多媒体。

  几何图形可以直观地表示出来,人们认识图形的初级阶段中主要依靠形象思维。远古时期人们对几何图形的认识始于观察、测量、比较等直观实验手段,现代儿童认识几何图形亦如此,人们可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置.

  培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。在这套教科书的几何部分,七年级上、下两册要先后经历“说点儿理”“说理”“简单推理”几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的"思维习惯。

  由于信息技术的发展与普及,直观实验手段在教学中日益增加,有些学校还建立了“数学实验室”,这些对于几何学的学习起到积极作用。随着教学研究的不断深入,直观实验会在启发诱导、化难为易、检验猜想等方面进一步大显身手。但是,直观实验终归是数学学习的辅助手段,数学毕竟不是实验科学,它不能象物理、化学、生物等学科那样最后通过实验来确定结论。实验几何只是学习几何学的前奏曲或第一乐章,后面的乐曲建立在理性思维基础上,逻辑推理是把演奏推向高潮的主要手段。

  四转变评价手段,让每个学生找到学习数学的自信。

  评价就其实质来讲,乃是一种监控机制。这种反馈监控机制包括"他律"与"自律"两个方面。所谓"他律"是以他人评价为基础的,"自律"是以自我评价为基础的。每个人素质生成都经历着一个从"他律"到"自律"的发展过程,经历着一个从学会评价他人到学会评价自己的发展过程。实施他人评价,完善素质发展的他人监控机制很有必要。每个人都要以他人为镜,从他人这面镜子中照见自我。但发展的成熟、素质的完善主要建立在自律的基础上,是以素质的自我评价、自我调节、自我教育为标志的。因此要改变单纯由教师评价的现状,提倡评价主体的多元化,把教师评价、同学评价、家长评价及学生的自评相结合。尤其要突出学生的自评,提高他们的自我认识、自我调节、自我评价的能力,增强反思意识,培养健康的心理。 注重数学与生活的联系,从学生认知规律和接受水*出发,这些理念贯彻到教材与课堂教学当中,很好地激发了学生学习数学的兴趣。学生们善于提出问题、敢于提出问题、解决问题的能力强,已经成为数学新课标下学生表现的一个标志。

  通过学习几何可以认识丰富多彩的几何图形,建立与发展空间观念,掌握必要的几何知识,培养运用这些知识认识世界与改造世界的能力。但是,这些并不是几何学的全部教育功能。从更深层次看,学习几何学的一个重要的作用是:以几何图形为载体,培养逻辑思维能力,提高理性思维水*。这正是自古希腊开始几何教学一直倍受重视的主要原因。

  从实际需要看,一个普通人一生中运用几何知识的时间、场合,要比他应该运用逻辑思维的时间、场合少得多。前者在特定的环境下发生,而后者经常地、普遍地出现,它的作用远比前者大得多。一个人学过几何后,如果不继续从事与数学关系密切的学习或工作,他一生中有可能很少甚至不会用到在某个几何定理,但是他肯定应该经常不断地在不同程度上使用逻辑推理来分析问题。当然,其他课程也可以培养学生的逻辑思维能力,学习几何学并不是实现此目的之唯一途径。但是,长期以来几何学被普遍认为是适合培养逻辑思维能力的绝好课程是客观事实。形成这种状况的原因主要有:几何学的历史悠久,学科体系成熟;几何学体系的逻辑性特点格外突出;几何学的研究对象是几何图形,结合几何图形,利用图形语言,在一定程度上可以降低认识和理解逻辑推理的难度。

  按照人的一般认知规律,认识几何图形的过程,也是从具体到抽象,从简单到复杂,从特殊到一般,从感性到理性的过程。根据教育心理学的规律可知,初中学生多处于认识方法发生升华的阶段,他们对事物的认识已不满足于表面的、孤立的层次,而有了向更深层次发展的要求,即向往“由此及彼,由表及里”的思维方式。从几何教学的内容看,学生们从小学开始已经通过直观实验这种主要方式学习了基础的图形知识,在他们的头脑中已经积累了一定的关于图形的感性认识,在初中阶段应该更深入地在“为什么”的层面上认识图形。显然,单纯的直观实验这种学习方式已经不适应继续深入学习的需要,因为这种方式难以真正从道理上对图形规律进行解释,而逻辑推理的方式才能担此重任。因此,从“实验几何”向“推理几何”的过渡成为初中几何教学必须面对的问题,培养逻辑推理能力成为初中几何教学必须实现的教学目标。

  认识几何图形既需要形象思维,又需要抽象思维,两者相辅相成。虽然我们强调几何教学中逻辑推理的重要性,但是并不排斥直观实验。直观实验是初级认识手段,逻辑推理是高级认识手段。“看一看”“量一量”“做一做”等直观实验活动在几何学习的初始阶段的重要性尤为突出,即使在推理几何阶段的学习中,直观实验也具有重要的辅助作用,人们常借助某些直观特例来发现一般规律、探寻证明思路、理解抽象内容,有时直观实验与逻辑推理是交替进行的。

  让学生享受数学的有趣:可利用愉快的游戏、生动的故事、激烈的竞赛、入境的表演、热情的掌声等创设出一种愉悦的学习情境,诱发学生的学习情趣;让学生时常感受到“数学真奇妙!”,从而产生“我也想试一试!”的心理。

  让学生享受数学的有用:借助生活情境,让学生寻找有关的数学问题,使学生体会到我们的生活中蕴涵着丰富的数学问题,感受数学学习在生活中的作用。

  让学生享受数学的精彩:创设一切机会让学生学会思考,乐于思考、善于思考,只有这样,数学才能展示其精彩的一面;在教学中可有意识地安排一些问题让学生多途径思考,发现答案有多种多样;让他们体味出更多的精彩!享受数学的成功:“教育教学的本质就是帮助学生成功。”一次成功的机会却可以十倍地增强学生的信心;因此,课堂上教师应毫不吝啬自己鼓励的眼神、赞许的话语,批改作业时尽量少一些令人生厌的“×”,可以写上“再算算”。

圆周角教学反思2

  本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用.同时,圆周角性质也是说明线段相等,角相等的重要依据之一.

  本节课的重点是圆周角的概念和经历探索圆周角性质的过程,难点是合情推理验证圆周角与圆心角的关系.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大.而对圆周角与圆心角的关系理解起来则相对困难,特别是圆心在圆周角内部、圆心在圆周角外部这两种情况,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.此外,在知识的应用过程中还应引导学生注重前后知识的联系,提高学生综合运用知识的能力,培养学生对数学的应用意识、创新意识.

  本节课我设计了问题情境——自主探究——拓展应用的课堂教学模式,以学生探究为主,配合多媒体辅助教学.在教学过程中,教师将问题式教学法,启发式教学法,探究式教学法,情境式教学法,互动式教学法等多种教学方法融为一体,注重教学与生活的联系,创设富有挑战性的问题情境,引导学生用数学的眼光看问题,发现规律,验证猜想.教学中注重学生的个体差异,让不同层次的学生充分参与

  到数学思维活动中来,充分发挥学生的主体作用.运用适度的激励,帮助学生认识自我,建立自信,不仅“学会”,而且“会学”“,乐学”.引导学生采用动手实践,自主探究,合作交流的学习方法进行学习,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力.与此同时,教师通过适时的点拨、精讲,使观察、猜想、实践、归纳、推理、验证贯穿于整个学习过程之中。本节课不足的是,由于内容较多,节奏有点快,可能有部分学生掌握的不够好,还需点时间巩固练习。

圆周角教学反思3

  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。*古代的几何学家研究几何是为了实用,是唯用是尚的。在勾股定理教学中反思如下:

  一转变师生角色,让学生自主学习。

  由同学们的作图,我们发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。当然作图存在着误差。可仍然证明不了我们的猜想是否正确。下面我们用拼图的方法再来验证一下。请同学们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明a2+b2=c2(学生分组讨论。)学生展示拼图方法,课件辅助演示。

  新课标下要求教师个人素质越来越高,教师自身要不断及时地学习新知识,接受新信息,对自己及时充电、更新,而且要具有诙谐幽默的语言表达能力。既要有领导者的组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。

  “教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1*方米到底有多大?因此,新课标要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。

  数学的创造性不能没有逻辑思维,学习数学可以帮助养成理性思考的习惯。数学并不是公式的堆垒,也不是图形的汇集,数学有逻辑性很强的体系。数学不是只强调计算与规则的课程,而是讲道理的课程。培养与运用逻辑思维,并不是不顾及学生的可接受性一味地片面强调推理的严密和体系的完整,而是既要体现逻辑推理的作用,又不片面夸大它。几何的教学体系有别于几何的科学体系,在几何教学中,讲道理并完全不等同于纯粹的形式证明,几何教学培养逻辑思维能力同样要有的放矢,循序渐进,从直观到抽象,从简单到复杂?? 二转变教学方式,让学生探索、研究、体会学习过程。

  学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于学生实践能力的培养非常不利的。现在的数学教学到处充斥着过量的、重复的、不断循环的、人为挖掘的训练。 学习的过程性:

  1.关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;

  2.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理. 学习的知识性:掌握勾股定理,体会数形结合的思想.

  试一试:我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面。请问这个水池的深度和芦苇的长度各是多少?

  新课标对几何内容的安排。安排采取了首先是直观和经验,接着是说理与抽象,最后是演绎

  的方案。以直线形为例,先借助直观认识一个直线形,进而借助多种手段合乎情理地发现它的某种几何性质,接着通过演绎推理把这个性质搞定。看上去,强化了直观和实验,弱化了推理,实际上,在这里直观和推理两者都很重要,而且两者之间互为支撑,有互逆的性质。让直观几何和推理几何并重,把发现和证明绑在一起,与传统的几何课程体系确有不同。说到几何,新课标对几何的重视程度丝毫没有减弱,而是在加强。例如直观和实验几何的触角已经伸向了小学低年级,同时欧氏几何的体系和内容差不多还是完整呈现。如果说有所弱化,就是具体要求降低了,这种降低主要体现在两个方面,一个是对推理几何的难度要求有所限制,另外是弱化了相似形和圆(包括圆与直线之间的关系)这块内容的证明部分。

  教材内容的丰富,充分激发了学生的学习积极性。教材编排了一些游戏性的智力题,引导学生发现数学规律,探索数学世界的奥秘,采用阅读一些数学小故事和数学发展史,丰富学生的数学知识和对世界数学文化的了解,充分激发了学生继续学习数学和发展数学的积极性,把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别侧重于培养学生认识事物,探索问题,解决实际的能力。让学生感兴趣且愿意学,并且接受知识是循序渐进的过程,随着数学知识的不断学习,也使学生亲身体会到了学习数学的重要意义:我们的生活中处处离不开数学,处处需要数学,学习数学也是非常有意思的。三提高教学科技含量,充分利用多媒体。

  几何图形可以直观地表示出来,人们认识图形的初级阶段中主要依靠形象思维。远古时期人们对几何图形的认识始于观察、测量、比较等直观实验手段,现代儿童认识几何图形亦如此,人们可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置.

  培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。在这套教科书的几何部分,七年级上、下两册要先后经历“说点儿理”“说理”“简单推理”几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的思维习惯。

  由于信息技术的发展与普及,直观实验手段在教学中日益增加,有些学校还建立了“数学实验室”,这些对于几何学的学习起到积极作用。随着教学研究的不断深入,直观实验会在启发诱导、化难为易、检验猜想等方面进一步大显身手。但是,直观实验终归是数学学习的辅助手段,数学毕竟不是实验科学,它不能象物理、化学、生物等学科那样最后通过实验来确定结论。实验几何只是学习几何学的前奏曲或第一乐章,后面的乐曲建立在理性思维基础上,逻辑推理是把演奏推向高潮的主要手段。

  四转变评价手段,让每个学生找到学习数学的自信。

  评价就其实质来讲,乃是一种监控机制。这种反馈监控机制包括"他律"与"自律"两个方面。所谓"他律"是以他人评价为基础的,"自律"是以自我评价为基础的。每个人素质生成都经历着一个从"他律"到"自律"的发展过程,经历着一个从学会评价他人到学会评价自己的发展过程。实施他人评价,完善素质发展的他人监控机制很有必要。每个人都要以他人为镜,从他人这面镜子中照见自我。但发展的成熟、素质的完善主要建立在自律的基础上,是以素质的自我评价、自我调节、自我教育为标志的。因此要改变单纯由教师评价的现状,提倡评价主体的多元化,把教师评价、同学评价、家长评价及学生的自评相结合。尤其要突出学生的自评,提高他们的自我认识、自我调节、自我评价的能力,增强反思意识,培养健康的心理。 注重数学与生活的联系,从学生认知规律和接受水*出发,这些理念贯彻到教材与课堂教学当中,很好地激发了学生学习数学的兴趣。学生们善于提出问题、敢于提出问题、解决问题的能力强,已经成为数学新课标下学生表现的一个标志。

  通过学习几何可以认识丰富多彩的几何图形,建立与发展空间观念,掌握必要的几何知识,培养运用这些知识认识世界与改造世界的能力。但是,这些并不是几何学的全部教育功能。从更深层次看,学习几何学的一个重要的作用是:以几何图形为载体,培养逻辑思维能力,提高理性思维水*。这正是自古希腊开始几何教学一直倍受重视的主要原因。

  从实际需要看,一个普通人一生中运用几何知识的时间、场合,要比他应该运用逻辑思维的时间、场合少得多。前者在特定的环境下发生,而后者经常地、普遍地出现,它的作用远比前者大得多。一个人学过几何后,如果不继续从事与数学关系密切的学习或工作,他一生中有可能很少甚至不会用到在某个几何定理,但是他肯定应该经常不断地在不同程度上使用逻辑推理来分析问题。当然,其他课程也可以培养学生的逻辑思维能力,学习几何学并不是实现此目的之唯一途径。但是,长期以来几何学被普遍认为是适合培养逻辑思维能力的绝好课程是客观事实。形成这种状况的原因主要有:几何学的历史悠久,学科体系成熟;几何学体系的逻辑性特点格外突出;几何学的研究对象是几何图形,结合几何图形,利用图形语言,在一定程度上可以降低认识和理解逻辑推理的难度。

  按照人的一般认知规律,认识几何图形的过程,也是从具体到抽象,从简单到复杂,从特殊到一般,从感性到理性的过程。根据教育心理学的规律可知,初中学生多处于认识方法发生升华的阶段,他们对事物的认识已不满足于表面的、孤立的层次,而有了向更深层次发展的要求,即向往“由此及彼,由表及里”的思维方式。从几何教学的内容看,学生们从小学开始已经通过直观实验这种主要方式学习了基础的图形知识,在他们的头脑中已经积累了一定的关于图形的感性认识,在初中阶段应该更深入地在“为什么”的层面上认识图形。显然,单纯的直观实验这种学习方式已经不适应继续深入学习的需要,因为这种方式难以真正从道理上对图形规律进行解释,而逻辑推理的方式才能担此重任。因此,从“实验几何”向“推理几何”的过渡成为初中几何教学必须面对的问题,培养逻辑推理能力成为初中几何教学必须实现的教学目标。

  认识几何图形既需要形象思维,又需要抽象思维,两者相辅相成。虽然我们强调几何教学中逻辑推理的重要性,但是并不排斥直观实验。直观实验是初级认识手段,逻辑推理是高级认识手段。“看一看”“量一量”“做一做”等直观实验活动在几何学习的初始阶段的重要性尤为突出,即使在推理几何阶段的学习中,直观实验也具有重要的辅助作用,人们常借助某些直观特例来发现一般规律、探寻证明思路、理解抽象内容,有时直观实验与逻辑推理是交替进行的。

  让学生享受数学的有趣:可利用愉快的游戏、生动的故事、激烈的竞赛、入境的表演、热情的掌声等创设出一种愉悦的学习情境,诱发学生的学习情趣;让学生时常感受到“数学真奇妙!”,从而产生“我也想试一试!”的心理。

  让学生享受数学的有用:借助生活情境,让学生寻找有关的数学问题,使学生体会到我们的生活中蕴涵着丰富的数学问题,感受数学学习在生活中的作用。

  让学生享受数学的精彩:创设一切机会让学生学会思考,乐于思考、善于思考,只有这样,数学才能展示其精彩的一面;在教学中可有意识地安排一些问题让学生多途径思考,发现答案有多种多样;让他们体味出更多的精彩!享受数学的成功:“教育教学的本质就是帮助学生成功。”一次成功的机会却可以十倍地增强学生的信心;因此,课堂上教师应毫不吝啬自己鼓励的眼神、赞许的话语,批改作业时尽量少一些令人生厌的“×”,可以写上“再算算”。

圆周角教学反思4

  本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解,勾股定理的应用的教学反思(郑茹)。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。

  针对本班学生的特点,学生知识水*、学习能力的差距,本节课安排了如下几个环节:

  一、复习引入

  对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水*低,引入内容简短明了,花费时间短。

  二、例题讲解,巩固练习,总结数学思想方法

  活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书,教学反思《勾股定理的应用的教学反思(郑茹)》。整个活动以学生为主体,教师及时的引导和强调。

  活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。

  活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。

  三、巩固练习,熟练新知

  通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。

  在教学设计的实施中,也存在着一些问题:

  1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。

  2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。

  3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。

圆周角教学反思5

  教学目标:

  (1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;

  (2)培养学生观察、分析、想象、归纳和逻辑推理的能力;

  (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法。

  教学重点:

  圆周角的概念和圆周角定理

  教学难点:

  理解圆周角定理的证明

  教学活动设计:

  (在教师指导下完成)

  (一)圆周角的概念

  1、复习提问:

  (1)什么是圆心角?

  答:顶点在圆心的角叫圆心角。

  (2)圆心角的度数定理是什么?

  答:圆心角的度数等于它所对弧的度数。

  2、引题圆周角:

  如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角。(如右图)

  (演示图形,提出圆周角的定义)

  定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角

  3、概念辨析:

  教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由。 学生归纳:一个角是圆周角的条件:

  ①顶点在圆上;

  ②两边都和圆相交。

  (二)圆周角的定理

  1、提出圆周角的度数问题

  问题:圆周角的度数与什么有关系?

  经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系。引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部

  (1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半。

  提出必须用严格的数学方法去证明。

  (2)其它情况,圆周角与相应圆心角的关系:

  当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论。

  证明:作出过C的直径(略)

  圆周角定理: 一条弧所对的

  周角等于它所对圆心角的一半。

  说明:这个定理的证明我们分成三种情况。这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想。(对A层学生渗透完全归纳法)

  (三)定理的应用

  1、例题: 如图OA、OB、OC都是圆O的半径, ∠AOB=2∠BOC。 求证:∠ACB=2∠BAC

  让学生自主分析、解得,教师规范推理过程。

  说明:

  ①推理要严密;

  ②符号“”应用要严格,教师要讲清

  2、巩固练习:

  (1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?

  (2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数? 说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个。

  (四)总结

  知识:

  (1)圆周角定义及其两个特征;

  (2)圆周角定理的内容。 在思想方法:一种方法和一种思想:

  在证明中,运用了数学中的分类方法和“化归”思想。分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题。

  (五)作业 教材P100中 习题A组6,7,8

  教学反思

  本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用。同时,圆周角性质也是说明线段相等,角相等的重要依据之一。

  本节课的重点是圆周角的概念和经历探索圆周角性质的过程,难点是合情推理验证圆周角与圆心角的关系。在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大。而对圆周角与圆心角的关系理解起来则相对困难,特别是圆心在圆周角内部、圆心在圆周角外部这两种情况,因此在教学过程中要着重引导学生对这一知识的探索与理解。还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出。此外,在知识的应用过程中还应引导学生注重前后知识的联系,提高学生综合运用知识的能力,培养学生对数学的应用意识、创新意识。

  本节课我设计了问题情境——自主探究——拓展应用的课堂教学模式,以学生探究为主,配合多媒体辅助教学。在教学过程中,教师将问题式教学法,启发式教学法,探究式教学法,情境式教学法,互动式教学法等多种教学方法融为一体,注重教学与生活的联系,创设富有挑战性的问题情境,引导学生用数学的眼光看问题,发现规律,验证猜想。教学中注重学生的个体差异,让不同层次的学生充分参与

  到数学思维活动中来,充分发挥学生的主体作用。运用适度的激励,帮助学生认识自我,建立自信,不仅“学会”,而且“会学”“,乐学”。引导学生采用动手实践,自主探究,合作交流的学习方法进行学习,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力。与此同时,教师通过适时的点拨、精讲,使观察、猜想、实践、归纳、推理、验证贯穿于整个学习过程之中。本节课不足的是,由于内容较多,节奏有点快,可能有部分学生掌握的不够好,还需点时间巩固练习。


《圆周角》教学反思3篇(扩展3)

——圆周角和圆心角的关系教学反思3篇

圆周角和圆心角的关系教学反思1

  把射门游戏问题抽象为数学问题,研究圆周角和圆心角的关系,研究圆周角和圆心角的关系,应该说,学生解决这一问题是有一定难度的,尽管如此,教学时仍应给学生留有时间和空间,让他们进行思考。

  让学生经历观察、想象、推理、操作、描述、交流等过程,多种角度直观体验数学模型,而这也正符合本章学习的主要目标。

圆周角和圆心角的关系教学反思2

  在本节课的教学中,我结合本节课教学内容、教学目标和学生的认知规律,在教学设计上,一是注重创设情境,激发学生学习的兴趣、主动性和求知欲望,为下一步教学的顺利展开开个好头;二是注重引导学生经历探索、验证、论证、应用数学新知的过程,鼓励学生用动手实践、自主探究、合作交流的学习方法进行学习,使学生在数学活动中深刻的理解知识和掌握由特殊到一般的认知方法。

圆周角和圆心角的关系教学反思3

  本节课我认为是一节研究性的课,结论虽然简单、易用,但是探索的过程中体现了数学的分类思想与化归思想。如何让学生自然地理解是这节课的难点。

  最开始,我是计划通过学生动手作圆周角来体会分类,但是考虑到时间的关系,没有让学生动手,尽管在后面对分类思想在本节课的应用进行了充分的讲解,但是对于学生自主探究还是有些欠缺,使学生对“为什么要分类”体会的不是很充分。这是本节节课比较遗憾的地方。另外,没有充分考虑到不同层次学生的需求。看了各位老师的建议,我获益匪浅,在今后上课的时候对各个环节更应充分的考虑。


《圆周角》教学反思3篇(扩展4)

——昆虫教学反思3篇

昆虫教学反思1

  昆虫在城市里幼儿是很少看见的,提起虫子有的幼儿会害怕,而有的幼儿很好奇的想看看。根据幼儿这方面的的知识比较少,我就设计了认识昆虫《螳螂》这节课,让幼儿对昆虫产生兴趣,引起幼儿的好奇心,让幼儿有想探索的想法。对于新设计的这节课,在设计的时候,一直在设想有可能出现哪些状况,这些状况真的出现了,我应该如何解决,在众多想法中设计完这节课。

  为了幼儿能更好的了解螳螂,我在电脑上找了相关资料和图片,先要自我的去了解螳螂,从多方面全面了解,自己找好一些教学能用得到的图片制作成幻灯片。在教学中,用幻灯片引入螳螂,在讲解中把螳螂分成7部分讲解,又分6部讲解了螳螂食用什么,让幼儿一步步的去了解,让幼儿学的更清楚。这节课的目标总共就这两个,看起来目标就这两点有点少,要讲起来可真不少。在课上讲多了,幼儿的积极性就没了,要随时调动幼儿的积极性,让幼儿有兴趣的听下去。

  这节课在开始讲的时候,我是信心满满,在讲解的过程中发现一点,幻听片要是能配上声音,像课件那样就好了。没有找到真正的活螳螂也是我这节课的缺失,要用活物螳螂,可以让幼儿围在一起讨论,这要学习的效果会更好。在设计的时候感觉想的全面,在教学实践时会发现自己想的还是不够全面,经过讲课发现想法还是不够完美,实践是发现问题的好方法。这些结论都是我的教学反思,为我以后更好的教学,添上了完美的一笔。

昆虫教学反思2

  现在刚刚进入春天,有些树木和草儿都发了牙,但昆虫家族还没有真正出现。除了蚂蚁之外,蝴蝶、蚜虫等还不能进行观察。怎么办?是把这一课推后再上,还是随机应变。我想,不管是昆虫,还是非昆虫,这节课关键是培养学生运用放大镜观察物体的能力和体会放大镜等观察工具的作用,所以,还是可以上的。于是,我布置学生带上放大镜、纸和笔,一起来到学校的草坪里,开始了这节课的观察活动————观察小动物或小植物。

  孩子们的兴致特别高。捉蚂蚁的、挖蚯蚓的、捉蜘蛛的,甚至有几个胆大的男学生在草丛里找到了甲壳虫和小蜈蚣,胆子小的女生则去观察迎春花的花蕊,有的在池塘边挖到了青苔。每有一个新的发现,都会引起一片哄动,孩子们也迫不及待地找到我,与他们共同分享他们的“壮举”。

  下课了,有的同学还未尽兴。有的把蜘蛛带走了,有的托着一块青苔走了,说要继续深入地研究。我坐在办公室里欣赏着孩子们一幅幅的记录,真为他们的细心所折服。看——一棵青苔就像是一棵卷心菜;蜘蛛的腿上原来长着许多的刚毛;蜘蛛原来有4只眼睛,还有6只眼睛的……

  虽然,我们的科学课还不够深入,我们的孩子研究科学问题还不是那么地成熟,但我相信,只要努力去做,我们学校科学教学的明天会更加的美好!

昆虫教学反思3

  在综合实践活动中,随着学生实践能力的逐步提高,教师的组织管理作用逐步蜕变成引导和交流的合作方式。

  这一节实践课和以往的主题活动一样,我们经历了前期准备、过程指导、汇报评价三个环节的组织和学习。学生在活动中,其知识能力、情感态度等方面都有了一定的收获。另外,在小组合作中形成共同意识,在跨组交流中达到资源共享,达到了“双赢”目的。此外,我把活动最终的评价权交给了学生,这也体现了活动中学生全程参与的主动地位。

  本节课也有许多不足之处:其一,教师准备不充分,其表现是课堂语言不精炼,不优美;其二,活动组织中参与度不够,指导不得力;其三,课堂驾驭能力不强,还有待提升。


《圆周角》教学反思3篇(扩展5)

——《叶公好龙》教学反思3篇

《叶公好龙》教学反思1

  本课是北师大版五年级语文第二学期第一单元的一篇文言文,比喻表面爱好某种事物,而实际上并不是真正爱好。

  高年级学生在学习中能否获得积极良好的情感体验,不仅是能否全身心地投入学习活动使学习目标得以实现的重要前提,还关系到学生能否受到良好的情感教育,从而促进个性健康发展的问题。所以我不仅把小学语文教育看作是科学知识的教育,更看作是学生个性发展的教育。

  因此,在课堂教学中看到的就不是被封闭在“知”与“不知”的动态*衡上,而是放到了每一个学生充分活动的“问题”与“解决”的广阔的空间里,使学生在问题解决的过程中一次次获得良好的情感体验。

  教学本课伊始,我先给学生声情并茂地讲了一个切合文章寓意的故事,再根据故事提出问题导入新课,学生兴趣浓厚。在学生基本读通、读顺课文后,再让学生感知课文内容。

  在理解古文每句话的意思时,我注重先扶后放,渗透学法指导,培养学生的自学能力。让学生先交流自己预习了哪些词语的意思,再让他们质疑,最后运用老师提示的方法,自主、合作译文。

  学生在读完后,都积极地进行思考,我发现他们个个都抢着回答问题,只是在回答的过程中,个别学生的口头表达能力还比较差,但是其他学生能及时地给予更正。

  我认为采用自主合作探究的模式,让学生在质疑之后分工合作解决疑难,从而读懂课文的主要内容,这样的方法比较适合高年级的古文教学。在汇报交流中,畅所欲言,打破了传统,形成了开放式课堂,也扎实、深入地理解了古文每句话的意思,突破了教学的难点,是这次教学的可取之处。

  但是,指导学生理解寓意的教学缺乏层次性,加上对教学时间安排得不够合理,前松后紧,让学生联系生活实际理解寓意的时间不够充分,所以有些学生对《叶公好龙》这个成语的意思理解得可能还不够深刻。另外,在学习过程中,对叶公这个人孩子们可能会有一些不同的想法,教师应在尊重学生个性化理解的前提下,启发引导,展开讨论,对叶公进行多元评价,这节课上教师对这一点也关注得不够。

《叶公好龙》教学反思2

  去年10月份曾听过窦老师的一节文言文公开课,受到的启发就是要引导学生通过读明白文言文与现代文相比,从词语、句的对照读入手,整堂课显得得心应手。但是能否正确流利地朗读,本课出现几个容易读错的字,而学生朗读和背诵时本课教学的重点。

  在教学本课时,我指导学生先从“好”字,这个多音字来揭示课题,并就题设疑:哪些句子写叶公喜欢龙?结果怎么样?让学生带着问题,自课课文。在学生基本读通、读顺课文后,再让学生回答前面的问题,使学生初步感知课文内容。当教学本课时我注重先扶后放,渗透学法指导,培养学生的自学能力。

  让学生先读,再让他们思考,学生在读完后,都积极地进行思考,我发现他们个个都抢着回答问题,只是在回答的过程中,个别学生的口头表达的能力还比较差,但是其他学生能及时地给予理更正。

  教学时抓住动物的特点练习有感情朗读课文,懂得做事要有主见、有耐心。利用朗读使学生加深对课文的理解,指导学生分角色朗读课文,注意读出叶公见到真龙时,那种害怕的样子。加上与老师一起竞赛背诵时,短短的一节课时间有三十多名同学能顺利地背下来,让我意想不到。

  在下节课的学习过程中,对这篇课文的内容,孩子们可能会有一些不同的想法,教师在尊重学生个性化理解的前提下,可以启发引导,展开讨论。采用对叶公应有多元评价。通过对本文的学习使学生能够明白一个道理,让学生以这个寓言故事来教育自己,使自己不会犯类似叶公这样的"错误。

《叶公好龙》教学反思3

  《叶公好龙》是北师大五年级语文第二学期第一单元的一片文言文,这是一则寓言故事。故事主要写了古代的春秋时期,陈国叶公非常喜欢龙,他在家的梁、柱、门、窗和日用摆设上都雕刻着龙,连衣服上被子上也绣着龙,屋里墙壁上也画着龙。天上的真龙知道了,很感动,就来到叶公家拜访他。这条真龙的龙头从窗户谈近来,龙尾拖到厅堂里。叶公一见,吓坏了,呼叫着逃走了。叶公好龙现在也是一则成语,形容人表面上喜欢某些事物,实际上并不是真正爱好,我们常用它来形容那些口是心非的人。

  有了上学期的两篇古文学习,对于孩子们来说并不陌生,但是这种文体离我们的孩子比较久远,学起来还是有难度的。于是我在教学时尽量让同学们感觉到它的故事性,具体是这样教学的:先是揭题,通过题目,让学生迅速掌握本则寓言要讲述的大致内容,讲的是一个叫“叶公”的人“喜欢(好)”“龙”的故事。这可以说是文章的脉路,让学生沿着这条脉路自己去读,自己想,最后归纳出寓意,这样可以避免传统教学中的不必要的分析和乏味的说教。学习寓言最重要的不仅仅是让学生了解寓意,还要让学生深刻理解这则寓言的现实意义,学以致用,才是学习的最高境界。因此,教学中要想让学生理解寓言并对寓言产生浓厚兴趣,并激发他们在课外自我学习的动力,我们就要引导学生对现实生活的体验,探索生活中有没有“叶公好龙”的现象,都表现在哪些人的身上,又有哪些具体表现形式。联系生活谈感受,培养学生自主学习的能力。这样,一方面不仅能让学生读懂寓言故事,体会寓意,受到教育,另一方面也可让学生初步领略古典文化的博大精深。

  从最后结束时学生们的发言中可以看出孩子们已经非常深刻的理解了这则寓言的含义,看来这节课基本是成功的。


《圆周角》教学反思3篇(扩展6)

——《圆周运动》教学设计3篇

《圆周运动》教学设计1

  一、教学目标

  【知识与技能】

  知道描述圆周运动快慢的两个物理量——线速度、角速度,会推导二者之间的关系。

  【过程与方法】

  通过对传动模型的应用,对线速度、角速度之间的关系有更加深入的了解,提高分析能力和抽象思维能力。

  【情感态度与价值观】

  在思考中体会物理学科严谨的逻辑关系,提高分析归纳能力,养成严谨科学的学习习惯。

  二、教学重难点

  【重点】

  线速度、角速度的概念。

  【难点】

  二者关系的推导过程。

  三、教学过程

  环节一:新课导入

  情景导入:课件展示生活中常见的圆周运动:

  展示生活中的一些运动,引导找相似点:运动轨迹是一些圆,这种运动叫做圆周运动——引出课题。

  环节二:新课讲授

  过渡:学生列举生活中的圆周运动。

  1.田径场弯道上赛跑的运动员的运动;

  2.风车的转动;

  3.地球的自转与公转;

  4.自行车的前后轮、大小齿轮转动等。

  研究物体的运动时,我们往往会提到物体的运动快慢。对于做直线运动的物体,我们用单位时间内的位移来描述物体的运动快慢.。

  问题:对于圆周运动又如何描述它们的运动快慢呢?

  (一)线速度

  演示1:在台式电风扇的叶片上分别标记红、蓝两种颜色的点,到中间轴的距离不等。用手缓慢拨动叶片转动,让学生感受两点的运动,并用flash模拟。

  让学生仔细观察,说出哪个点运动得快,你是怎么比较的。

  讨论交流

  两个点运动时间相同,但通过的弧长不相等,通过的弧长长的点运动得快。

  总结:圆周运动的物体通过的弧长与所用时间的比值能够描述物体运动的快慢,我们把它称之为线速度。

  定义:弧长l与通过这段弧长所用时间t的比值叫做线速度, 。(物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫做匀速圆周运动)

  说明:(1)线速度是瞬时速度。

  (2)线速度是矢量,它既有大小,也有方向(在圆周各点的切线方向)。

  (3)匀速圆周运动是一种非匀速运动,因为线速度的方向在时刻改变。

  (4)单位:m/s.

  (二)角速度

  观察刚刚的flash,风扇叶片上的点在转动时,除了弧长发生了变化以外,还有什么变了?(与中点连线的角度)

  所以同样可以用半径转过的角度φ和所用时间t的比值来表示圆周运动的快慢。即角速度

  定义: 说明:(1)对某一确定的匀速圆周运动而言,角速度ω是恒定的;

  (2)单位:rad/s。

  (三)推导二者关系

  教师给出任务:尝试总结出线速度、角速度二者的关系。

  学生独立进行推导,得出结论, , ,根据数学关系l=θr得:v=ωr.

  环节三:巩固练习

  给出问题场景:让学生观察自行车传动结构示意图中的大齿轮、小齿轮、后轮三个部分的转动,分析A、B、C三个点线速度、角速度的.关系。

  环节四:小结作业

  除了线速度、角速度,还有一些可以用来描述快慢的物理量,如周期T、频率f,试着自己推导这些物理量之间的关系。

  四、板书设计


《圆周角》教学反思3篇(扩展7)

——《黄继光》教学反思3篇

《黄继光》教学反思1

  我今天这节课是《黄继光》的第二课时,第一课时主要是让学生学习生字、理解词语,通过初步感知课文内容,了解人物的品质。第二课时主要让学生通过理解重点句子,体会黄继光的为革命牺牲的伟大精神。让学生感受革命英雄主义教育。上完课,总结了一下,做的比较到位的有以下几点:首先,课堂的导入注重了新旧知识的结合、过渡,为下面内容的展开做好了铺垫。其次,能突出教学重点、难点。在指导学生对典型语言的学习的过程,着重加强对学生朗读能力的训练。多媒体课件的使用较好的辅助了教学难点。使学生对革命英雄主义有了更直接、真实的感受。最后作业设计让学生的学习由课堂延伸到生活,使德育教育落实到实处。但是静下心来仔细思考,课堂中还存在着这样和那样的问题,训练学生读的过程中,照顾的层面不完整。朗读时如果让基础好的学生带动基础不好的学生,可能训练的效果会更好,朗读也容易落实到每个学生的身上。其次,学生独立思考的时间安排有些短,环节进行的有些仓促。还有,板书太简单,没有个性化的彰显。学无止境,艺无止境。这节课又一次说明了这个道理。一节好的公开课,即使再充分准备,也仍会留下这样、那样的遗憾。但遗憾并不可怕,只要正确的认识、对待,相信自己也会在一次次的遗憾中,一点点的进步与成长。

《黄继光》教学反思2

  《黄继光》这篇课文由于故事发生的年代与现在差距甚远,因此若以一般的“读故事-说故事-思考故事”的教学步骤来上课,其效果并不理想,学生一方面对课文理解不深,另一方面感情也不够投入。经过思考,我采用了创设情境的方法。《语文课程标准》也指出:学生是语文学习的主人,语文教学应为学生创设良好的自主学习环境,激发学生的兴趣。于是,我这样来设计新课:

  一、师生交流课前搜集的战争背景资料,让学生在课前充分了解课文背景,增加黄继光和这场战役在学生心中的立体感,从而将学生自然而然地带入故事中去。

  二、初读课文,了解并概括主要内容。

  三、小组合作解决生字词,并将容易错的字写一个。

  四、入境动情。播放电影《上甘岭》的几个片断(课件)。

  五、自主读悟。再看一个片断,分析597。9高地在上甘岭战役中地位,直奔重点,说说从哪些地方能读出敌人的“拼命”,并将有关的句子用曲线划出来。

  六、读议激qing。读出敌人的拼命。再奔重点,议议黄继光怕不怕?从哪里能看出来?作者为什么用了一个“啊!”字?

  七、真情流露。假如你是黄继光的战友,你想对他说什么?并朗诵一首诗〈〈永恒〉〉。同学们想怎样表达对黄继光的感情呢?读书?写诗?写感想?下面的时间学生自己处理。

  八、拓展提高。请同学们课后查阅更多的英雄资料,进一步与英雄对话。

  教学反思:

  本教案设计充满着崭新的理念。教学环节一波三节,层层剥笋下去,学生之情不动自动。

  1、师生交流背景资料,吸引了学生的注意力,激发了学生探求故事的愿望,从而很自然地被带到黄继光的故事中。

  2、运用多媒体课件播放战争片段,让学生直观感知,激*感,为下面的`“读”奠定基础。

  3、引导学生理解教材,完成黄继光英雄形象的再塑造。学生天生是一个探究者,教师的作用就是为学生提供探究的切入点。我抓住了“啊!”字和三个“!”读读议议。首先通过“啊!黄继光站起来了!在暴风雨一样的子弹中站起来了!”“黄继光又站起来了!他张开双臂,向喷射着火舌的火力点猛扑上去,用自己的胸膛堵住了敌人的枪口。”这两个句子的理解,让学生明白,黄继光参加的是一次最激烈的战斗,处境极其险恶,完成任务的困难极大,面临着极为严峻的考验。

  4、尊重学生自由表达的权利。通过读书、朗诵诗、写诗、写感想等形式与英雄进行心灵对话。学生真情流露,读得入情,写得感人。

  5、课后请学生查阅更多的英雄资料。沟通课堂内外,开发课程资源,增加实践机会。

《黄继光》教学反思3

  1、讲读课过程中,体会第九自然段文中两次描写黄继光站起来的作用时,我问:“黄继光站起来几次?”学生们很多人都认为是两次,我当时以为学生们误解了文中的表达方法,但过后想:从全文看黄继光确实站起来两次,如果提问改成:“此时,黄继光站起来几次?”应该不会有那么多人回答两次了。所以教师在课堂上的语言一定要凝练、准确。

  2、学生们对于课文重点语句的把握比较准确,比我与预计的还要丰富。这些和学生们在第一课时搜集展示的黄继光的材料有关。看来兴趣是最好的老师啊。我为自己学生的进步而高兴。

  战争与和*――《黄继光》教后随笔

  黄继光、上甘岭战役、朝鲜战争,这一切已过去半个多世纪了,但它仍然深深地影响着我们,影响着整个世界。它让我们明白:和*的背后是战争。

  可*时我们是怎么教学生们的呢?无非是强调热爱和*,这当然没错,但我们从未告诉学生和*是怎么得来的,它绝不来源于高呼我是爱和*的,也绝不来源于仁义道理。实力的大小是维护和*的唯一法码。也许四年级的学生太小,不懂那么多,但我们至少应该告诉孩子朝鲜战争的意义是使我们的*在世界上成为了强者。

  写的这些,可能有些极端,但这是真理,因为弱者是没法谈和*的,强者不仅来源于实力,更来源于精神。想起那一衣带血的日本人曾指着一艘陈列的旧军舰对其子说:“当我们打败了北洋水师,我们就成为了强国”;我们也应指着插图对学生们说:“当黄继光睹枪眼的那一刻,巨龙醒了。”


《圆周角》教学反思3篇(扩展8)

——信息教学反思3篇

信息教学反思1

  本节课从学生的认识特点和实际能力出发,以"猜数游戏"为例,主要是让学生通过亲身体验信息编程加工的一般过程和方法,了解信息编程加工的内在机制,认识程序的特点和作用,培养学生进一步学习程序设计的兴趣。

  1.本节课的教学我感到最为成功的地方是,以学生为本,紧扣课标,教材处理恰当,将益智游戏"猜数游戏"引入教学内容。

  主要围绕信息编程加工的过程来进行,在此过程中利用启发式、提问式等方法,使学生在愉悦中了解编程加工的方法和步骤,打消学生对编程的思想顾虑。

  2.分层教学的实施

  教学中采用了分层教学,布置了任务一、二、三和拓展任务,由浅入深、由易到难,具有很强的连贯性和明显的梯度。对不同的学生有不同的要求,"零起点"学生能运行程序,看运行结果,亲身感受计算机程序解决问题的过程,懂得计算机程序设计的基本流程,"非零起点"的学生通过对课堂准备好的小游戏完善性编程,提高了对程序设计的认知水*。这样所有的学生都能达到课标的要求,每个学生在自己的基础上都有所提高。

  3.对重难点的把握和细节处理到位。

  整个教学活动紧紧围绕教学的重点(信息编程加工的主要过程)而展开,加之益智游戏"猜数游戏"的合理穿插,小游戏完善性编程拓展教学,逐步突破了教学难点;同时注重细节的处理,比如对算法设计的讲解和诠释、对编程环境的选择、对编程加工内在机制的分析等都进行了比较细致的思考。

信息教学反思2

  我认为,现代教育改革的核心是使学生变被动型学习为主动型学习,让他们在真实的环境中学习和接受挑战性的学习任务。教师的角色逐渐由传统的“知识传授者”转变成“设计者、指导者、组织者、帮助者、学习资源管理者及研究者”。这在给教师提出全新的挑战的同时,也为教师提供了广阔的创造空间。笔者认为,信息技术课上创造性地使用教材要注意以下几点:

  1、全面把握教材的编写意图,紧紧抓住教学重点,明确教学目的,不应为创造而创造、刻意更改教材内容,要做到教学手段与教学目的和谐一致。根据信息技术课的特点,遵循“从知识到技能、从技能到知识”的认知规律:自学→掌握知识;动手→培养技能;应用→将知识与技能紧密结合并互相转化。让学生在动手实践中感悟知识,发现知识,形成技能。毕竟,未经“必然王国的跋涉与历练”,哪有“自由王国的驰骋与翱翔”?

  2、从学生的经验出发,选用他们喜闻乐见的方式完成有趣的学习任务,采取多种教学手段激发、保持学生浓厚的学习兴趣,满足学生的“发现”需要和创造的“成就感”,尊重学生学习的独特体验,放手让学生学,实现教学的有效性。

  3、教学不能局限于一节课,局限于一时,必须着眼于学生的长远发展,以更高、更长远的眼光来处理教材,实现课程的拓展延伸。

信息教学反思3

  五年级下册教材第六单元,整组是以“走进信息世界”为主题的综合性学习材料。面对新的“综合性学习”单元,我们如何有效进行教学呢?结合《语文课程标准》及教材编排意图,本单元教学应实现:通过本单元的教学,让学生了解信息在我们生活的存在及其价值,了解古今的主要信息传递方式,有初步的收集信息和处理信息的能力,能自主策划学习活动并开展活动。如何在整合中实现这些目标呢?就是要敢于放手,放手让学生自主、合作、探究,让他们的才能在语文综合性学习活动中得到充分的锻炼提高,活力得到更多的释放张扬,当然教学就会更加精彩。

  我参考了一些教学参考,主要从以下方面入手:

  一、放手自主,激发学生自主学习的积极性

  要实现综合性学习的目标,我们必须鼓励学生自主。自主是合作探究的基础,是学生搞高综合性学习的前提。

  1.自主选择主题。五年级学生已具备了相当的语文知识与综合能力,我们应该充分相信学生。只有信任学生,才能放手;只有放手,学生能力才能得到进一步的释放和发展。我们放手信任学生,应从选择活动主题开始,给予学生足够的自*利。这个单元的两个板块“信息传递改变着我们生活”和“利用信息写简单的研究报告”共7则阅读材料,这些材料并不等同于课文,我们教师不一定都要依序教学,可以鼓励学生根据实际打破教材顺序,整合重组两个以上的材料,并确定某个主题来研讨,如“因特网将世界连成一家”“神奇的电脑魔术师”与“网上呼救”可以整合在一起进行教学,学生可以用“神奇的因特网”为探究题目,进行相关自主探究活动。

  2.自主策划活动并制定计划。五年级学生也具备一定的组织策划能力。《语文课程标准》规定第三学段学生要“策划简单的校园活动和社会活动,对所策划的主题活动进行讨论和分析,写活动计划和活动总结。”我们在专门的综合性学习活动中当然应该去实现这个目标,教师要放手让学生根据自己确定的主题,自主去策划综合性学习活动,如对于网络利弊的认识,可以让学生自主设计活动,可以开展辩论比赛,可以开展演讲活动,也可以仿照电视开展访谈等活动。

  3.自主开展活动。教师是教学活动的组织者和引导者,但是综合性学习不一定都必须由教师来当主持人,教师应鼓励学生自己去完成综合性学习的各项活动,包括学生自己主持活动,自己做活动准备工作,自己做活动总结反思。教师不必担心学生策划的活动质量不高,其实学生自主策划的活动,他们真正参与了,收获和体验是不同的,在其中,他的能力更能得到提升。

  4.处理好自主与引导的关系。虽然强调学生自主,但教师的引导作用不能忽略。鼓励学生自主,并不是教师撒手不管。教师要善于引导,善于帮助,善于当好参谋,如个别学生不会选择主题时,我们教师可以提供一些参考题目,引导学生思考;学生在独立策划活动方案时,可能经验不足,有些因素考虑不到,制定的方案存在不尽完善,不够恰当,不够深入等问题,这时,我们教师可以进行指导,提出建议,让学生再修改,帮助学生拟订更切合实际的活动方案;对于简单调查报告的撰写,有的学生可能在教材范例中不能发现调查分析的方法,总结不出恰当的调查报告的写法,这时,也需要教师点拨提示。

  二、放手合作,提高合作学习的有效性

  综合性学习的内容比较宽泛,本单元就有“信息传递改变着我们生活”和“利用信息写简单的研究报告”两大主题。这些主题的探究任务,要由一个学生在较短的时间内完成肯定不现实,因此我们必须放手让学生合作学习。综合性学习的合作,不能简单地让学生分个小组随便说说了事,应该注意提高合作学习的有效性。

  1.合作交流互补。一个班级学生水*参差不齐,认识能力有高有低,通过交流,学生可以互相启发,互相补充,互相提升。比如,要了解信息传递对生活的影响作用,学生各自去了解,往往从各自生活圈子去寻找,思路难免狭窄,通过学生之间的交流,学生可以彼此互补,相互启发,最后形成比较完善的结论。

  2.合作论辩争鸣。在综合性学习中,学生可能在讨论过程中形成完全不同或者部分不同的观点,通过组内或班内的争论,可以彼此启发,加深认识理解,最后也许彼此融合调整,也许一方被另一方说服后修改等,这都是一种提升。如对于因特网利弊的认识,多数学生可能只看到好处,部分学生能看到弊端,通过争辩学生会修正自己的看法,从而对因特网有更科学更全面的认识。

  3.合作完成任务。综合性学习的探究任务较重,往往需要多个学生共同承担才能在有限的时间里完成整个计划,如为了了解“信息”的价值及传播途径,培养学生收集信息处理信息的能力.

  4.处理好合作与分工的关系。合作学习要有明确的任务分解,同时要将这些任务进行明确分工。没有明确的分工,稍复杂的任务便不能完成。但只强调分工不注重合作也不行。小组成员完成任务时,会遇到困难与问题,假如不合作,某个任务卡了壳,整个活动计划就得搁浅,因此分工也要合作,也需要互相帮助。在合作中分工,在分工中合作,综合性学习活动才能保证质量。

  三、放手探究,提升探究的水*

  五年级的综合性学习,应该有别于中段的综合性学习活动。本组教材围绕一个主题,安排整组单元的综合性学习内容,编者期待着通过教学提升学生综合探究的水*。

  本组教材涉及“信息”话题,我们教材呈现的阅读材料都包含丰富的信息,学生课外阅读的资料还有更多的信息。如何培养学生的处理信息能力,提升探究水*呢?我们建议多开展分析与综合的思维训练,并根据分析和综合的不同运用,进一步开展“比较、抽象、概括和具体化”等思维训练活动。

  1. 在分析与综合中探究。

  “分析”是把事物的整体分解为部分,或从整体中区分出个别特征、个别方面的思维方法。“综合”与分析相反,是在思想中把事物的各个方面、各个部分、各种因素联结起来成为一个整体,以便从总体上把握事物。比如让学生通读第一板块的五则材料后提问:“你阅读后发现本板块主要说了什么观点?”,学生的这个思维过程就是综合。“阅读《烽火戏诸侯》这则阅读材料后,你知道了多少有关‘信息’的信息?”,这个过程就是在进行“分析”的思维训练。“学了第一板块的五则材料,你知道了古今有哪些信息传递的方式?”这个过程既有综合又有分析。

  2.处理好探究的结果俞过程的关系。学生探究活动能得出什么样结论并不重要,重要的在探究中体验探究的乐趣,学习探究方法,锻炼思维能力,提升综合探究水*。

  总之,教师要明确目标,要敢于整合,要敢于放手,大胆鼓励自主、合作、探究,这样,学生的语文综合素养便能得到不断发展和提升。

推荐访问:圆周角 反思 教学 《圆周角》教学反思3篇 《圆周角》教学反思1 圆周角的教学反思

Top