卓迈文档网
当前位置 首页 >专题范文 > 公文范文 >

同底数幂的乘法4篇

发布时间:2024-09-02 19:00:04 来源:网友投稿

同底数幂的乘法今天我讲了一节《5.1同底数幂的乘法一》。我在备课的时候准备的很充足,考虑到了学生在课堂上将出现的各种情况。讲的时候很顺利,学生的状态和他们的下面是小编为大家整理的同底数幂的乘法4篇,供大家参考。

同底数幂的乘法4篇

同底数幂的乘法篇1

今天我讲了一节《5.1同底数幂的乘法一》。我在备课的时候准备的很充足,考虑到了学生在课堂上将出现的各种情况。讲的时候很顺利,学生的状态和他们的发言不怎么令我满意。还没拿过别的班级上过数学课,于是我借用了初一<13>班,从来没上过别的班级,感觉就是不大一样,当然上了这节课我也有了很大的进步。

我在备课时是这样设计的:首先,这节课是在上学期学习了幂之后有关的一节课,学生对于幂的了解都很深,所以并没有进行巩固复习,而是提出问题:同学们,谁知道太阳距离我们地球有多远吗?然后再跟学生一起解决:光的速度约为3×105千米/秒,太阳光照射到地球大约需要5×102秒。地球距离太阳大约有多远?设置悬念,引发学生的好奇心,充分激起学生的兴趣,唤起学生的学习热情,整个设计突出体现学生的参与意思,让学生在运算的过程中发现运算法则。学生不是被动地接受现成的书本知识,而是在经验过程中主动探索,发现经验中事物之间的联系过程。同时整个设计过程也体现了从特殊到一般,再从一般到特殊的重要数学思想。这有利于学生养成良好的思维习惯。在整个设计过程中,我也设计了判断题、选择题和变式题。一则有利于避免错误;二则可以通过此来培养学生逆向思维来提高认识。最后,根据学生情况,分层次留作业。

对于本节课我的感受是:当有人听课的时候,我还是有一点点紧张。如上课时把下面这道题忘了讲解就跳过去了已知:am=2, an=3. 求am+an  =?.

这倒不影响整节课。所以有人听课时不要太过于注重课堂的流程,这样往往达不到预想的效果,只要真正做到把知识开心的传授给学生才是讲课的根本。

同底数幂的乘法篇2

同底数幂的乘法

教学目标

1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;

2.在推导“性质”的过程当中,培养学生观察、概括与抽象的能力.

教学重点和难点

幂的运算性质.

课堂教学过程设计

一、运用实例导入新课

引例一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?

学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?

要解方程(x+3)(x+5)=x(x+ 2)+39必须将(x+3)(x+ 5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要要用到整式的乘法.(写出课题:第七章 整式的乘除)

本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.

为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.

二、复习提问

1.乘方的意义:求n个相同因数a的积的运算叫乘方,即

2.指出下列各式的底数与指数:

(1)34; (2)a3; (3)(a+b)2; (4)(-2)3; (5)-23.

其中,(-2)3 与- 23 的含义是否相同?结果是否相等?(-2)4 与- 24 呢

三、讲授新课

1.利用乘方的意义,提问学生,引出法则

计算103×102.

解:103×102=(10×10×10)+(10×10)(幂的意义)

=10×10×10×10×10(乘法的结合律)

=105.

2.引导学生建立幂的运算法则

将上题中的底数改为a,则有

a3·a2=(aaa)·(aa)

=aaaaa=a5, 即a3·a2=a5=a3+2.

用字母m,n表示正整数,则有

=am+n, 即am·an=am+n.

3.引导学生剖析法则

(1)等号左边是什么运算? (2)等号两边的底数有什么关系?

(3)等号两边的指数有什么关系? (4)公式中的底数a可以表示什么?

(5)当三个以上同底数幂相乘时,上述法则是否成立?

要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

四、应用举例变式练习

例1 计算:

(1)107×104; (2)x2·x5.

解:(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7.

提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.

课堂练习

计算:

(1)105·106; (2)a7·a3; (3)y3· y2;

(4)b5· b; (5)a6·a6; (6)x5·x5.

例2 计算:

(1)23×24×25;(2)y· y2· y5.

解:(1)23×24×25=23+4+5=212.(2) y· y2 · y5 =y1+2+5=y8.

对于第(2)小题,要指出y的指数是1,不能忽略.

五、小结

1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.

2.解题时要注意a的指数是1.

六、作业

同底数幂的乘法篇3

[课题]

义务教育课程标准实验教科书数学(北师大)七年级下册第一章第3节

一、教学目的:

1、在一定的情境中,经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

2、了解同底数幂的乘法运算性质,并能把解决一些简单的实际问题。

二、教学过程实录:

(铃响,上课)

教师:在an这个表达式中,a是什么?n是什么?

当an作为运算时,又读作什么?

学生:a是底数,n是指数,an又读作a的n次幂。

教师:(多媒体投影出示习题)用学过的知识做下面的习题,在做题的过程当中,认真观察,积极思考,互相研究,看看能发现什么。

计算:

(1) 22 × 23 (2) 54×53

(3) (-3)2 × (-3)2 (4) (2/3)2×(2/3)4

(5) (- 1/2)3 × (- 1/2)4 (6) 103×104

(7) 2m × 2n (8)(1/7)m×(1/7)n (m,n是正整数)

(学生开始做题,互相研究、讨论,气氛热烈,教师巡视、指点,待学生充分讨论有所发现后,提问有何发现)

学生A:根据乘方的意义,可以得到:

(1) 22 × 23 = 25

(2) 54 × 53 =57

(3) (-3)2 × (-3)2 = (-3)5……

教师:刚才A同学说出了根据乘方的意义计算上面各题所得结果,计算是否准确?

学生:计算准确。

教师:通过刚才的计算和研究,发现什么规律性的结论了吗?

学生 B:不管底数是什么数,只要底数相同,结果就是指数相加。

教师:请你举例说明。

学生B到前边黑板上板书:

22×23=(2×2)×(2×2×2)=2×2×2×2×2=25

底数不变,指数2+3=5

教师:其他几个题是否也有这样的规律呢?特别是后两个?

学生:都有这样的规律。

教师:请以习题(7)为例再加以说明。

学生C到前边黑板上板书:

2m × 2n =(2×2×…×2×2×2)×(2×2×…×2)=(2×2×…×2)=2m+n

m个2 n个2 (m + n)个2

底数2不变,指数m + n。

教师:大家对刚才两个同学发现的规律有无异议?

学生:没有。

教师:那么,下面大家一起来看更一般的形式:am · an(m,n都是正整数),运用刚才得到的规律如何来计算呢?(学生举手,踊跃板演)

学生D到前边黑板上板书:

am × an =(a×a×…×a×a×a)×(a×a×…×a)=(a×a×…×a)=am+n

m个a n个a (m + n)个a

教师:既然规律(小编★)都是相同的,能否将中间过程省略,将计算过程简化呢?

学生:能。

教师:将中间过程省略,就得到am · an =am+n(m,n 都是正整数)

在这里m,n 都是正整数,底数a 是什么数呢?

学生1:a是任何数都可以。

学生2:a必须是有理数。

学生3:a不能是0。

教师:既然大家对底数a是什么样的数意见不统一,下面大家代入一些数实验一下,然后互相交流,讨论一下。(学生纷纷代入数值实验、讨论,课堂气氛热烈)待学生讨论后:

教师:请得到结论的同学发表意见。

学生1:底数可以是任何数,但我们学的数都是有理数,所以a是任意有理数。

学生2:底数a可以是字母。

学生3:底数a可以是代数式。

教师:刚才几个同学说的很好,底数a确实可以是任何数,将来我们学的数不都是有理数,另外底数a还可以代数式。

教师:请大家思考,刚才我们一起研究的这种乘法应该叫什么乘法呢?

学生:同底数幂的乘法。

教师:刚才大家通过计算,互相研究得到的是同底数幂的乘法运算的方法,现在大家思考一下,如何用你的语言来叙述这个运算的方法呢?(学生积极思考,教师板书课题后提问)

学生1:底数不改变,指数加起来。

学生2:把底数照写,指数相加。

学生3:底数不变,指数相加。

教师:(边叙述边板书)刚才几个同学归纳的很好,同底数幂相乘,底数不变,指数相加。

教师:下面运用所学的知识来判断以下的计算是否正确,如果有错误,请改正。(投影出示判断题)

(1)a3·a2=a6 (2)b4·b4=2b4

(3)x5+x5=x10 (4)y7·y=y8

教师逐个提问学生解答。

教师:接下来,运用同底数幂的乘法来做下面的例题(投影出示例题)

例1:计算(1) (-3)7×(-3)6 (2)(1/10)3×(1/10)

(3)-x3·x5 (4)b2m·b2m+1

两名同学到前面来板演,其他同学练习,教师巡视指点,待全体同学做完,对照板演改错,强调解题中的注意问题。

教师:现在我们一起来运用本课所学的知识解决一个实际问题。(投影出示课本引例)

光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4。22年,一年以3×107秒计算,比邻 星与地球的距离大约是多少千米?

一名同学到前面板演,其他同学练习,待学生做完后发现板演同学有错误。

教师:大家一起来看王鑫同学的板演,发现有问题的请发言

学生李某:最后结果37。983×1012(千米)是错的,不符合科学技术法的要求。

教师:请你给他改正。

学生李某到前面改正3。7983×1013(千米)

教师:科学技术法,如何记数,怎样要求?

学生王某:把一个较大的数写成a×10n,其中1≤a

同底数幂的乘法篇4

学习目标:

(1)经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义;

(2)了解同底数幂乘法的运算性质,并能解决一些实际问题。

(3)在进一步体会幂的意义时,学习同底幂乘法的运算性质,提高解决问题的能力。

学习重点:同底数幂的乘法运算法则。

学习难点:同底数幂的乘法运算法则的灵活运用。

一、课前延伸

1、式子103,a5各表示什么意思?

2、指出下列各式子的底数和指数,并计算其结果。

?) -52 32 (-3)2 -34 ( ) ( 341212

3、化简下列各式:

(1)3a3+ 2a3

(2)3a3- 3a2- a3

【课内探究】

二、创设情境,感受新知

问题:一种电子计算机每秒可进行103次运算,它工作 103 秒可进行

多少次运算?

1、探究算法

103×103=(10×10×10)×(10×10×10)( ) =10×10×10×10×10×10 ( )

=106 ( )

2、合作学习,寻找规律

① 53×52② 108×103 ③ 97×910 9m×9n ⑤a5×a63、定义法则

①、你能根据规律猜出答案吗?

猜想:am·an=? (m、n都是正整数)

②口说无凭,写出计算过程,证明你的猜想是正确的 am·an=

思考

(1)等号左边是什么运算?

(2)等号两边的底数有什么关系?

(3)等号两边的指数有什么关系?

(4)公式中的底数a可以表示什么?

(5)当三个以上同底数幂相乘时,上述法则成立吗?

三、应用新知,体验成功

例1、计算下列各式,结果用幂的形式表示:

(1)x2·x5 (2)(a+b)·(a+b)6

(3)2×24×23 (4)xm·x3m+1

【小试牛刀】1、口答题:

① 78×73 ②x3〃x5

③(a-b)2〃(a-b) ④a · a3 · a5 · a6

2、下面的计算对不对?如果不对,怎样改正?

(1)b5·b5= 2b5 ( ) (2)b5 + b5 = b10 ( )

(3)x5·x5 = x25 ( ) (4)y5· y5 = 2y10 ( )

(5)c·c3 =c3 ( ) (6)m + m3 =m4 ( )

四、拓展训练,激发情智

例2计算下列各式,结果用幂的形式表示:

①(-3)2×(-3)3 ②34×(-3)3

③(m-n)3 〃(n-m)2 ④3×33×81

【更上一层】1、填空。

(1)x5 ·( )= x 8

(2)xm ·( )=x3m

(3)如果an-2an+1=a11,则n=

2、已知:am=2, an=3.求am+n =?。

例3光的速度为3×105千米/秒,太阳光照射到地球上约需5×102秒,问:地球离太阳多远?

【检验自我】课本117页练习1、2题

五、归纳小结

【温馨提示】几个须注意的地方:

(1)在计算时不能直接写出结果

(2)不能把同底数幂相乘的运算法则和其它法则混淆。

(3)进一步了解从特殊到一般和从一般到特殊的重要思想。

【课后提升】

配套练习册《同底数幂的乘法与除法》第一课时

推荐访问:底数 乘法 同底数幂的乘法计算题 同底数幂的乘法法则 同底数幂的乘法教案 同底数幂的乘法指数可以为负数吗 同底数幂的乘法典型题 同底数幂的乘法说课稿一等奖 同底数幂的乘法概念 同底数幂的乘法50道题 同底数幂的乘法负数如何算 同底数幂的乘法讲解课程

Top