2023年度人教版四年级下册数学优秀教案3篇(范例推荐)
人教版四年级下册数学优秀教案【学习目标】1、理解并掌握方程的意义,弄清方程与等式间的联系与区别。2、通过在不同的情景中建立等量关系列方程,经历方程模型的建构下面是小编为大家整理的人教版四年级下册数学优秀教案3篇,供大家参考。
人教版四年级下册数学优秀教案篇1
【学习目标】
1、理解并掌握方程的意义,弄清方程与等式间的联系与区别。
2、通过在不同的情景中建立等量关系列方程,经历方程模型的建构的过程。
3、初步培养学生的观察、抽象概括等能力。
【学习重点】
会用方程表示事物之间简单的数量关系。
【学习难点】
能根据图义,找到等量关系列出方程。
【学习过程】
一、谈话引入
师:生活中经常遇到各种各样的数,对吗?比如说,谁愿意告诉我你今年多大了?(学生说)只知道自己的年龄还不行,谁知道妈妈今年多大了?(学生说)自己的年龄,妈妈的年龄对你来说是已知数,那老师的年龄对你来说是……。.(未知数)以此来引出未知数。
二、利用等量关系,正确列出等式
1、出示天平图1:天平左边10克,天平右边:2克和一个樱桃
师:看天平的显示,谁能列出一个等式?(樱桃的质量+ 2克=10克),如果用未知数X来表示樱桃的质量,那么,可以列出一个什么样的等式呢?(2+X=10)
2、出示情景图2:四盒种子的质量一共是**克。
你从图中发现了什么?(4盒种子的质量=x克)
师:能根据这个相等关系写出一个等式吗?
师:请你给同学们介绍一下你的等式,先说字母表示什么意思?
师:如果用y表示每块月饼的质量,怎样用数学式子表示这个等式呢?(板书:4y=**)
师:下面老师加大难度,敢接受挑战吗?(同学们在家里帮爸爸妈妈倒过开水吗?现在请同学们仔细观察老师倒开水的过程,找一找这里有相等关系吗?)
3、课件出示图3:一壶水刚好倒满两个开水瓶和一个杯子。
师:你们找到其中的相等关系了吗?(两个热水瓶的盛水量+200毫升=**毫升)
师:如果用z表示每个热水瓶的盛水量,那么这个关系式可以怎样表示?(板书:2z+200=**)
4、理解方程的意义。
师:刚才我们通过称樱桃,称种子和水壶倒水的三次实践活动,得出了下面这三个等式:(x+5=10 4y=380 2z+200=**)
(1)同桌交流。说一说:上面的等式有什么共同特点?
(2)全班交流。
教师小结:这样含有未知数的等式叫方程。(板书课题:方程)
师:自己读一读,你认为关键词是什么?
(3)巩固知识。
师:说一说方程必须具备哪几个条件?(一必须是等式,二必须含有未知数)
5、会写方程师:你会自己写出一些方程吗?写下来同桌交换检查。
(学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。)
三、巩固练习
1、判断
下面式子哪些是方程,哪些不是方程?
35+65=100 x -14>72 y +24
5x+32=47 28<16+14 6(y+2)=42
2、练一练课本67页第一题说一说各图中的等量关系,再列出方程。
四、总结评价
师:关于方程还有很多有趣的内容,相信同学们还会以饱满的精神、积极地态度去研究、去探索方程的奥妙。
人教版四年级下册数学优秀教案篇2
一、教材
《三角形边的关系》这节课是北师大版义务教育课程标准实验教科书小学数学四年级下册第二单元的重要内容之一。教材通过动手操作活动导出所要研究的问题,接着介绍以实验的方法进行探究,目的是让学生知道“三角形任意两边的和大于第三边”,进而找到解决实际问题的数学原理。教材篇幅简短,但思路清晰,要点突出,教法学法寓于其中,方便教师教学。
分析教材可以看出,教材编写者力图让学生通过动手实验,收集、整理和分析数据的探索过程,自己发现和得出结论。为了让学生获得更深的感受和体会,我遵循编写意图,对教材还做了适当的扩充处理,增加了一些环节,让教学过程更显层次性和动态性。这一内容的教学,能使学生在已经建立三角形概念和知道三角形稳定性特性的基础上,进一步认识三角形的另一个重要特性,丰富三角形的知识。同时,也为以后继续学习三角形与四边形及其它多边形的关系打下基础。
二、教法
《义务教育数学课程标准》指出,教学要贯彻直观性、实践性、趣味性的原则。根据本课的内容特点,我将实践性原则摆在重要位置,将教学过程设置为学生自主活动的过程。主要采用的教学方法是谈话法、实验法、演示法、发现法等。教学中我将把这些方法有机结合在一起,灵活运用,期望实现最佳效果。
三、学法
《义务教育数学课程标准》指出:“学生的数学学习活动应当是一个生动活泼的、主动的和富有个性化的过程。”遵循这一理念,考虑与上述教法相适应,突出主体性和实践性,本节课我引领学生立足“三自”,主动学习,即:自由探究,自我总结,自主运用。安排学生足够的时间和空间,把课堂还给学生。
四、教学目标
1、通过摆一摆登封操作活动,探索并发现三角形任意两边之和大于第三边的规律。
2、让学生通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养学生发现问题的意识及提出问题的能力,积累探索问题的方法和经验。引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。
五、说教学重难点
重点:掌握三角形三条边的之间的关系
难点:在探索中发现三角形三条边之间的关系
六、教学过程
这节课以“让学生主动学习”为教学指导思想,为突出重,突破难点,达成预设的教学目标,我设计了以下几个个环节:
(一)谈话导入
1、出示一个三角形。(同学们,这是什么图形?)
2、什么样的图形叫三角形?(强调首尾相连的封闭图形。)
3、那你们想不想知道三角形的三条边有什么关系呢?今天这节课,我们就
来研究三角形三边的关系(板书课题)
(二)自主探索,合作交流,学习新知
1、合作用小棒摆三角形
请同学们将我们课前准备好的四组不同长度的小棒拿出来,同桌两个相互合作,看看哪组小棒能摆成三角形,哪组小棒摆不成三角形?
2、小组汇报
3、小组讨论:
同样是用三根小棒来摆三角形,为什么有的能摆成,有的却摆不成呢?观察、比较一下这两组实验结论,你能发现三角形三边之间有什么关系吗?
小组讨论交流,教师参与学生的讨论。
4、全班交流
(1)怎样的三根小棒能摆成三角形呢?各小组派代表汇报一下你们组的发现。
组1:三根长度不相同的小棒能摆成三角形
组2:两边长度加起来大于第三条边的长度的小棒能摆成三角形。
组3:…………
根据学生回答,举出反例:引导学生辨析,逐步完善学生认识,达成共识:三角形任意两边之和大于第三边。(板书)
(2)这边的各组小棒为什么不能摆成三角形呢?(强调“任意两边的和”)
5、教师小结
同学们,祝贺你们探索和发现了三角形边的关系,让我们自豪地再说一遍这个结论。
(三)看书巩固自己看教材第27页的内容
(四)拓展应用
1、教科书第28页练一练第1题
学生独立完成,指名汇报
2、出示小明上学的路线图,请同学们仔细观察,小明上学可以怎样走?有哪几条路线?在这两条路线中,走哪条路线最近?请你从数学的角度来解释这种现象。
集中分析,总结汇报
3、课本第28页练一练第2小题
学生独立完成,汇报结果
(五)课堂小结今天你学到了什么?
(六)布置作业课本28页练一练第3,4小题
人教版四年级下册数学优秀教案篇3
【例题求解】
【例1】在半径为1的⊙O中, 弦AB、AC的长分别为 和 ,则∠BAC度数为 .
作出辅助线,解直角三角形,注意AB与AC有不同的位置关系.
注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结
合起来.
圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.
【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( )
A. B. C. D.
思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.
【例3】 如图,已知点A、B、C、D顺次在⊙O上,AB=BD,BM⊥AC于M,求证:AM=DC+CM.
思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.
【例4】 如图甲,⊙O的直径为AB,过半径OA的中点G作弦C E⊥AB,在CB上取一点D,分别作直线CD、ED,交直线AB于点F,M.
(1)求∠COA和∠FDM的度数;
(2)求证:△FDM∽△COM;
(3)如图乙,若将垂足G改取为半径OB上任意一点,点D改取在EB上,仍作直线CD、ED,分别交直线AB于点F、M,试判断:此时是否有△FDM∽△COM? 证明你的结论.
思路点拨 (1)在Rt△COG中,利用OG= OA= OC;(2)证明∠COM=∠FDM,∠CMO=
∠FMD;(3)利用图甲的启示思考.
注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).
【例5】 已知:在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.
(1)求证:AF=DF;
(2)求∠AED的余弦值;
(3)如果BD=10,求△ABC的面积.
思路点拨 (1)证明∠ADE=∠DAE;(2)作AN⊥BE于N,cos∠AED= ,设FE=4x,FD=3x,利用有关知识把相关线段用x的代数式表示;(3)寻找相似三角形,运用比例线段求出x的值.
注 :本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.
学历训练
1.D是半径为5cm的⊙O内一点,且OD=3cm,则过点D的所有弦中,最小弦AB= .
2.阅读下面材料:
对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.
对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中 某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.
例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.
回答下列问题:
(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是 cm;
(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是 cm;
(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是 cm.
(2003年南京市中考题)
3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.
(1)请问以下三个图形中是轴对称图形的有 ,是中心对称图形的有
(分别用下面三个图的代号a,b,c填空).
(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可, 但要尽可能准确些,美观些).
a.是轴对称图形但不是中心对称图形.
b.既是轴对称图形又是中心对称图形.
4.如图,AB是⊙O的直径,CD是弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为( )
A.12cm B.10cm C. 8cm D.6cm
5.一种花边是由如图的弓形组成的,ACB的半径为5,弦AB=8,则弓形的高CD为( )
A.2 B. C.3 D.
6.如图,在三个等圆上各自有一条劣弧AB、CD、EF,如果AB+CD=EF,那么AB+CD与E的大小关系是( )
A.AB+CD=EF B.AB+CD=F C. AB+CD 7.电脑CPU芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU芯片,需要长、宽都是1cm的正方形小硅片若干.如果晶 圆片的直径为10.05cm,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗)。 8.如图,已知⊙O的两条半径OA与OB互相垂直,C为AmB上的一点,且AB2+OB2=BC2,求∠OAC的度数. 9.不过圆心的直线 交⊙O于C、D两点,AB是⊙O的直径,AE⊥ ,垂足为E,BF⊥ ,垂足为F。 (1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形; (2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程); (3)请你选择(1)中的一个图形,证明(2)所得出的结论。 10.以AB为直径作一个半圆,圆心为O,C是半圆上一点,且OC2=AC×BC,则∠CAB= 。 11.如图,把正三角形ABC的外接圆对折,使点A落在BC的中点A′上, 若BC=5,则折痕在△ABC内的部分DE长为 . 12.如图,已知AB为⊙O的弦,直径MN与AB相交于⊙O内,MC⊥AB于C,ND⊥AB于D,若MN=20,AB= ,则MC—ND= . 13.如图,已知⊙O的半径为R,C、D是直径AB同侧圆周上的两点,AC的度数为96°,BD的度数为36°,动点P在AB上,则CP+PD的最小值为 。 14.如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP×OP′=r2,这种把点P变为点P ′的变换叫作反演变换,点P与点P′叫做互为反演点. (1)如图2,⊙O内外各有一点A和B,它们的反演点分别为A′和B′,求证:∠A′=∠B; (2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形。 ①选择:如果不经过点O的直线与⊙O相交,那么它关于⊙O的反演图形是( ) A.一个圆 B.一条直线 C.一条线段 D.两条射线 ②填空:如果直线 与⊙O相切,那么它关于⊙O的反演图形是 ,该图形与圆O的位置关系是 。 15.如图,已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,对角线AC和BD的交点为P,AB=BD,且PC=0.6,求四 边形ABCD的周长。 16.如图,已知圆内接△ABC中,AB>AC,D为BAC的中点,DE⊥AB于E,求证:BD2-AD2=AB×AC. 17.将三块边长均为l0cm的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm) 18.如图,直径为13的⊙O′,经过原点O,并且与 轴、 轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程 的两根。 (1)求线段OA、OB的长; (2)已知点C在劣弧OA上,连结BC交OA于D,当OC2=CD×CB时,求C点坐标; (3)在⊙O,上是否存在点P,使S△POD=S△ABD?若存在,求出P点坐标;若不存在,请说明理由. 分式及其基本性质—分式的概念 内容:分式及其基本性质—分式的概念 P87-88 学习目标: 1、了解分式和有理式的概念,明确分式与整式的区别; 2、能用分式表示现实情景中的数量关系,体会分式的模型思想,进一步发展符号感。 学习重点:分式的概念 学习难点:分式概念的理解 学习过程 1.学习准备 1、举例谈谈分数的意义。 2、举例说明分数线的作用。 合作探究 1、问题1 有块稻田,第一块是4hm2,每公顷收水稻10500kg;第二块是3hm2,每公顷收水稻9000kg,这两块稻田平均每公顷收水稻 kg。 如果第一块是mhm2,每公顷收水稻akg;第二块是nhm2,每公顷收水稻bkg,则这两块稻田平均每公顷收水稻 kg。 问题2 一件商品售价x元,利润率为a%(a>0),则这种商品的成本是 元。 观察上面代数式: 它们有什么特征?和整式比较有什么不同? 2、你能写出几个和上面代数式类似的例子吗? 结合分数定义和p87分式定义,了解分式的概念。 整式和分式统称为有理式。 3、练习:下列代数式中,哪些是分式?哪些是整式? 4、思考: (1)我们知道分数中分母不能为零。同样,分式中的分母的值也不能为零,否则分式就没有意义。要保证分式有意义,则必须分母不能为零。 (2)分式的值在什么情况下为0? 5、例题 例1(1)当x取何值时,分式 有意义? (2)当x取什么值时,分式 的值有意义? (3)讨论:当x取什么值时,分式 的值O? 6、练习: (1)一箱苹果售价a元,箱子与苹果总质量为mkg,箱子质量为nkg。每千克苹果的售价为多少元? (2)当x取什么值时,分式 有意义? 3.学习体会对照学习目标,通过预习,你觉得自己有哪些方面的收获? 有什么疑惑? 4.自我测试 1、判断题,若是错的该怎样改正。 (1) 是分式。 ( ) (2) 不是分式。( ) (3)当分式的分子值为0时,分式的值为0。( ) (4)当x≠2时,分式 有意义。( ) 2、如果分式 的值为0,则x= 。 3、当x= 时,分式 的值为负数。 4、x等于什么数时,下列分式没有意义? (1) (2) 5、甲乙两人同时同地同向而行,甲每小时走akm,乙每小时走bkm。如果从出发到终点的距离为mkm,甲的速度比乙快,则甲比乙提前几小时到达终点? 思维拓展 1、如果分式 有意义,那么x的取值范围是 。 2、已知分式 ,问a取何值时: (1)分式的值为正? (2)分式的值为负? (1)分式的值为0? (1)分式没有意义 推荐访问:下册
人教版
四年级
人教版四年级下册数学优秀教案设计
人教版四年级下册数学优秀教案及反思
人教版四年级下册数学优秀教案教学反思
人教版四年级数学下册优秀教学设计
人教版四年级下数学教案详案
人教版4年级下册数学教案
人教版小学数学四年级下册教案集
四年级下册数学教学教案人教版
人教版四年级下册数学优质课教案
小学人教版四年级下册数学教案
热门文章:
- 酒店总经理年度工作总结8篇2024-12-07
- 2023年度大一上学期期末个人总结800字10篇(完整)2024-12-07
- 2023年高三综评期末总结8篇2024-12-07
- 四年级科学的教学总结6篇【精选推荐】2024-12-06
- 期末颁奖总结3篇(范文推荐)2024-12-06
- 医院客服年终个人总结7篇2024-12-06
- 2023年度高校寒假安全教育主题班会总结12篇(2023年)2024-12-06
- 2023年有关学生期末个人总结7篇(范文推荐)2024-12-06
- 2023年度公司业务部年终总结10篇2024-12-06
- 园林绿化有限公司年度工作总结5篇【完整版】2024-12-06
相关文章:
- 2022年六年级下册让真情自然流露话题作文十篇汇总2022-08-26
- 部编版四年级下册语文《乡下人家》教学反思范本2篇【精选推荐】2022-09-01
- 2022年四年级下册语文习题教案合集2022-11-10
- 2022小学数学老师四年级下册教学工作总结8篇(全文完整)2022-11-13
- 2022年二年级下册语文第二单元教案合集(完整文档)2022-11-16
- 人教版小学数学四年级下册全册同步练习含答案7篇2022-08-27
- 2023年小学语文三年级教案人教版(完整文档)2022-11-25
- 最新人教版六年级数学教案2022-11-25
- 2023年人教版小学英语优秀教案(精选文档)2022-11-26
- 2023年人教版小学音乐教案2022-11-26
- 四年级音乐线上线下教学衔接具体计划参考7篇2022-08-18
- 四年级下册安全教育教案3篇2022-08-30
- 小学四年级个人工作总结三篇2022-09-10
- 四年级总结2022-09-10
- 四年级个人学期总结(2022年)2022-09-10